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I. INTRODUCTION

Tnis report describes the work accomplisned under grant AFOSR-77-
3219 from the Air Force Office of Scientific Research during the period

1! February 1978 tnrough 3! January 1979.

Tne work is divided into two separate and disl'inct parts. Section
IT, written by Alan Huang, is concerned with a variety of architectural
issues in the design of any computer based on residue aritnmetic. Tne
results are directly applicable to optical approaches to residue comput-
ing, but are equally important in considering the design of electronic

versions of tnis type of computer.

Section III, written by Jon Mandeville, considers the problem of
error detection and correction in residue computers. As interest grows
in the use of residue techniques in what are basically analog systems,
the consequences of errors in the representation of residue numbers by
analog values must be considered. The issue is a complex one, for often
the probability of error willrincrease as the size of a given modulus
increases, so tne cnoice of moduli will affect the reliability of the
system., Sometimes extra moduli can be used for the sole purpose of pro-
tecting the integrity of the data. Tnese issues are explored in detail

in section TII.

Our earlier report [Ref. 1] is essential background reading before

begining this report. A sightly condensed version of the earlier report

ltnﬁ January 11th issue of Applied Optics.
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II. ARCHITECTURAL STUDIES

A. Background

The combination of residue arithmetic and optics was prompted by
the realization that the cyclic nature of the residue number system can
be mimicked by various physical phenomena. Our initial investigation
resulted in a genealogy of éﬁssible approaches as showé in Table 1. 1In
an effort to evaluate the relative advantages of the various approaches
we studied the physical switching mechanisms ultilized by each approach.
Our findings are summarized in Table 2. Speed, possibility of integra-
tion, and cost were used as some of thé‘criteria. These results were
then incorporated into an overall evaluation of the basic approaches, as

summarized in Table 3 ¥,

The approaches listed in the preceeding table involve a direct mim-
icking of the residue system. Some mathematical insights have enabled us
to relax some of the restraints on these technologies. One simplifica-
tion was the realization that any cyclic shift can be synthesized from a
binary decompostion of shifts. As an example, 2 cyclic shift of 7 is
equal to a shift of U4, a shift of 2, and a shift of 1. This result

reduced the type and number of shifts needed.

Another important finding was that the non cyclic maps needed for
multiplication can be generated with a fixed pre-permutation, cyclic
shifts, and a post-permutation [ Ref. 1, p. 36 ]. This allows technol-

ogy that was previously only capable of performing cyclic shifts to also

# Tables 1, 2, and 3 prepared by Dr. Yoshito Tsunoda of Hitachi
Ltd. during his stay at Stanford from 1976 thru 1977.
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perform multiplication. These technologies could then perform decoding

to mixed radix as well as other more complex computations.

These findings formed a foundation for a second generation of
implementations. Our efforts had been directed at mimicking cyclic
shifts with physical cyclic shifts. Such shifts can also be accom-

plished by several indirect means.

The first such approacﬁ was the off diagonal switching device [
Ref. 1, p. 34 ]. Mathematically, this approach relies on the fact that
the partitioning of an ordered set, the reversal of the elements in each
of the two subsets, and the reconcatenation of the two sets results in a
cyclie shift in reverse order. As an exaﬁple {0,1,2,3,4,5,6} would be
partition into {0,1,2,3} and {4,5,6}. Each of these subsets would then
be reversed. The result is {3,2,1,0} and {6,5,4}. Recombining these two
subsets would result in {3,2,%,0,6,5,4} which can be seen to be the
reverse of {4,5,6,0,1,2,3} which is a cyclic shift of 3. The primative
operations in this type of cyclic shifter are a partition , reversal,
and concatenation. This finding extends the types of technologies that

are capable of performing cyclic shifts. A simple conceptual example is

shown in Fig. 1(a), in which two lenses are used to perform a cyclic

spatial shift.

Another second generation mapping device is the "amida kuzi"
approach [ Ref, 1, p. 41 ], The mathematical basis of this approach is
that any permutation (1-to-1 mapping) can be accomplished with only
interchanges between neighboring elements. As an example, a cyclic shift
of 3 of the set {0,1,2,3,4,5,6} can be accomplished by modifying the

order with neighboring interchanges to {0,1,2,4,3,5,6} to
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FIG. 1: SECOND GENERATION SHIFTERS
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(0,1,4,2,5,3,6} to {0,4,1,5,2,6,3} to {4,0.5,1,6,2,3} to {4,5,0,6,1,2,3)
to finally {4,5,6,0,1,2,3}, which is a cyclic shift of 3. The primative
operation of this type of cyclic shifter is a pairwise interchange. This
finding also extends the types of technologies that are capable of per-
forming cyclic shifts. A simple conceptual example is shown in Fig.
1(b), where couplets of lenses are used to perform interchanges for a

cyclic permutation.

These second generation approaches to performing permutations
extend the range of technologies to be considered. This varity makes it

more difficult to focus on any "best" approach.

In an effort to gain a better perspecbive, this year's efforts were gi
devoted to examining both the potiental and limitiations of using vari-
ous technologies. Phrased in another way "given a certain technology

what can and cannot be done with it?%
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B. Given A Certain Technology What Can He Do With It?

The potential of such systems is dependent on the types of problems

that it can solve and the throughput ( data samples/sec ) with which it

can svlve these problems.

Some of the problems that seem attractive for a residue approach
are inner products, summation, and determinate evaluation. They are
representative of many of the problems in signal processing. They also
provide a convienent benchmark for comparisons with more conventional

computational approaches.

A residue approach is capable of very large throughputs. There are
two Tfundamental ways of achieving this goal. One appoach relies on
speed while the other relies on parallelism. These two architectural
strategies favor different technological traits. The overall gcal is to
relate the characteristics of a given technology to its performance on a
given problem using a given architectural approach. This will help to
define the appropriateness of a given technology and also to quantify
the relative merits of the a residue and conventional computational

approaches.

ST Ty




. Modular Processors Pipelined By Moduli ( The Rabbit )

A modular processor pipelined by moduli is shown in figure 2. This
architectural approach relies on ultilizing speed to achieve high
throughputs. We refer to this approach as the "rabbit" approach or as a
cascaded number theoretic processor. The processor works in much the
same way as an assembly line. The coefficients of a desired calculation
are placed on the data bus at the left. The MOD X processor takes these
coefficients and produces the modulus X equivalent of the answer for the
desired calculation. This answer is also one of the mixed radix coeffi-
cients of the answer; it is passed, along with the coefficients of the
calculation, by the data bus to the MOD Y processor. This processor
uses the coefficients along with the previously determined mixed radix
coefficients to compute another mixed radix coefficient. Meanwhile the
MOD X processor is processing the coefficients of another calculation.
This process continues. Each modular processor uses the coefficients
along with all the previously determined mixed radix coefficients to
produce another mixed radix coefficient. What emerges from the data bus
is a mixed radix version of the answer to the desired calculation. The
throughput rate of this pipelined processor is the reciprocal of the
maximum modular processor time. The last processor usually takes the
longest since it has to consider the results of all the previous proces-
sors. The latency, the time it takes for a given calculation to complete
this assembly line, is the product of the number of processors and the
maximum processor time. The accuracy or range of such a processor
depends only on the product of the moduli used. If a processor is
designed with many small moduli rather than a few large moduli then the

latency will be larger because there would be more modular processors.

- 10 -
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The throughput rate of this process is independent of the accuracy. This

i1s different from conventional computational apprvaches.

The throughput of this type of system is dependent on the maximum
modular processor time. For analytical purposes it was useful to estab-
lish some basic building blocks for modular processors. By studying the
behavior of these simpler structures the behavior of the modular proces=-
sors can be synthesized and the overall performance of such systems
predicted. The basic building blocks are shown in Figi 3. The opera-
tion of each of the building blocks for a given technology can be
characterized by two parameters. One is the set time; this is how long
the unit needs to get ready. The other parameter is the propagation
time; this is the time needed for a signal to propagate through the dev-

ice once it has been set.

The first unit is a map , i.e. 2 fixed permutation that needs no
set time. The time needed to propagate through the map is denoted as

t
p-

The next unit is a permutation primative. It either permutes the
incoming signal or bypasses it. It can be viewed as a switching mechan-
ism that directs the signal to one of two fixed maps. The switching
mechanism has a set time associated with it, which is denoted as ts
The signal has to then propagate through the switching mechanism as well

as through one of the two maps. This time is denoted as tpp_

The rest of the units can be constructed from these two basic dev-

ices and thus have set and propagation times that can be easily derived.

The function of a resjdue adder is to perform modular addition.

-12 -
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UNIT NAME SET TIME PROPAGATION TIME

MAP 0 t

PERMUTATION o .
PRIMITIVE s pp

-+ b RESIDUE ot ;
ADDER ts T Y flogym 1t , r
RESIDUE %
x 4 N
~ MULTIPLIER ts T o 2e, + MogymTe o+t )
RESIDUE % r
- E ENCODER ts Log Nlt |
RESIDUE o+t I It
—_— og.m,
= — SUBTRACTOR - s m 271 pp

i

*
If the set signal is optical then an additional detection

time of ;d seconds is needed.

FIG. 3: BUILDING BLOCKS
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It's structure is shown in Fig. 4. It consists of a cascade of permuta-
tion primatives that are contrulled by an action table implemented with
conventional electronic logic. The action table for a modulus 7 adder
is shown in Fig. 5 and Table 4., The columns of the table represent the
maps of the various permutation primatives. The rows represent the
number to be added. If the number to be added is 5 then that row of the
action table indicates that the permutation P(X) = X + U4 and the permu-
tation P(X) = X + 1 must be activated. Since the permutation primatives
are cascaded this will be equivalent to a permutation of P(X) = X + 5,
Such an action table is a simple table lookup and can be implemented
with one level of logic. The set time would thus be the time for vne
level of logic, t, and the set time of the permutation primatives, ts.
The propagation time depends on how many permutation primatives are cas-
caded, which in turn depends on the number of binary bits needed to
represent the modulus. The prupagation time would be flog2 mi]tpp where
M, is the modulus and the half brackets indicate the next larger

-integer.

The structure of a residue subtractor is identical to that of a
residue adder, except that the action table is modified. Such an action
table for modulus 7 subtraction is shown in Table 5. Modular subtrac-
tion is equivalent to addition of a modular complement. To subtract a
value of 5 , the permutation P(X) = X + 2 must be activated, since 2 is
the modular complement of 5 for modulus 7. The set and proupagate times

are identical to those of a residue adder.

The structure of a residue multiplier is shown in Fig. 6. It con-

sists of two fixed maps, several permutation primatives, and an action

- 14 -
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table. The fixed maps perform the equivalents of modular logs and anti-
logs [ Ref, 1, p. 36 ] ®. The right-most permutation primative performs
the permutation P(X) = O which covers the case of multiplication by
zero. The other permutation primatives provide various cyclic shifts,
The permutations needed for a modulus 5 multiplier are shown in Fig. 7.
The action table is shown in Table 6. To multiply by 3 the action table
directs permutation primatives PP1 and PP2 in Fig. 8 to be activated,
If a signal propagates through map M1, permutation primatives PP1 and
PP2, and map M2, then the permutation will be equivalent to the desired
permutation of P(X) = 3X. The set time of such a unit would require a
time of t, for the action table and a time of tg to set the reguired
permutation primatives. The propagation time varies with the size of the
moduli since this influences the number of permutation primatives needed
to provide the required shifts, The propagation time would be

2t .
p + [1082 (m1—1)1tpp + tpp-

The structure of a bipary to residue encoder is shown in Fig. 9.
It consists of a cascade of permutation primatives. If the number to be

encoded is in the form a pf + an_12n" + ... *%3;2 4 a, then the permu-

tation of the permuation primative PPn is P(X) = X + 2". The various
bits of the number to be encoded are used to activate the associated
permutation primative. Since all the permutation primatives are set in
parallel, the set time is just t_  The propagation time depends on how

many permutators are cascaded which in turn depends on the number of

bits in the number to be encoded. The propagation time 1is thus

Mog, Nmax'tpp, where Npo, is the largest number to be encoded.

* Also see pages 118-121 of Residue Arithmetic and Its Applica-
tions to Computer Technology by N. S. Szabo and R. I. Tanaka,
McGraw-Hill 1967

- 19 -
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FIG. 9: BINARY TO RESIDUE ENCODER

— o ~r '
+1 +! * :
>4 > = i
] ] 1t i}
=Rl = ) .
P B et

0000 0 0 0

0001 1 0 g

0010 0 1 0

0011 1 1 0

0100 0 0 1

0101 1 0 1

0110 0 1 1

0111 0 0 0

1000 1 0 0 '

1001 0 1 0] |

1010 1 1 0 |

1011 0 0 1 [

1100 | 1| o] 1 |

1101 0 1 1

1110 0 0 0

1111 1 0 0

TABLE 7 MODIFIED ADDER
ACTION TABLE FuR
ENCODING
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Encoding can also be accumplished by modifying the action table of
a residue adder. A modified action table to convert a 4 bit binary
number intv its modulus 7 equivalent is shown in Table 7. As an exam-
ple, to encode 1010, which is 10 in binary, the permutations P(X) = X +
2 and P(X) = X + 1 have tu be activated. This produces a permutation of
P(X) = X + 3. This is correct since 1010 has a net contribution of 3 for

modulus 7.

By properly incorporating the effects of the weighting factors
associated with the various digits of a number, an action table can be
implemented to encode any n bits of a number. Several of these units
can be cascaded to encode all the portions of a number. The set time is
the same as that of a residue adder. The propagation time would depend

on how many such units were cascaded.

It has been assummed in the previous discussion of building blocks
that the control signals for the building blocks were electrical. 1In
svme of the subsequent discussion the control signal will be optical. An
additional detection time of t, gseconds would have to be added to the
set times of the devices to represent the time needed to convert from an

optical tu an electrical signal.

These building blocks can be assembled to form modular processors

capable of solving certain types of problems.

(1) Summation Processor

The structure of a modular processor that performs summation is

shown in Fig. 10. The cvefficients of the desired summation are tapped

- 21 -
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off the bus and used to set the encoders. The subtractors and permuta-
tion primatives form the mixed radix decoding section *, They use the
previously determined mixed radix coefficients to convert the present
result into another mixed radix coefficient, All the building blocks can
be set at the same time. The pipelined structure shown in Fig. 2 insures
that all the coefficients and previously derived mixed radix coeffi-
clents are available to each modular processor. The maximum processor
time for a modular summation processor would be

t
max

(tg + tg) + Ngllogy Npaxltpp + (Np -1)(Tlogy miltpp + tpp) + td

( set encoders, subtractors, and permutators) +

( propagate through encoders, subtractors, and permutators ) +

( detect ),

where N, i3 the number of points to be summed and Ny is the number of
moduli used. The throughput rate of such a pipelined system would be the
recriprocal of t .= This equation is significant in that it connects tne
characteristics of a technology with the performance of a system
decigned to perform a particular type of computation. This connecticn

will aid in evaluating the appropriateness of a particular technology

for a particular type of problem.

(2) Ipner Preoduct Prucessor

The structure for a modular processor that performs inner products

is shown in Fig. 11, The coefficients of the desired inner product are

* The permutation primatives can be replaced with fixed maps if
the error correcting feature described below is not desired. To
correct an error, the suspicious result from a previous modular
processor is excluded from the decoding process by instructing the
associated subtractor to subtract a 0 and the associated premuta-
tion primative to bypass, rather than multiply, the result by a
constant. This operation would perserve the correctness of a par-
ticular calculation at the expense of a reduced range.
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tapped off the data bus and used to set all the encoders. The previously
derived mixed radix coefficients on the bus are used to set the subtrac-
tors and permutation primatives of the decoding section. Signals pro-
pagate through all the encoders. The signals of one vector are then used
to set the multipliers. The signals associated with the other vector
then propagate through these multipliers. These signals then set z2ll the
adders. A signal then propagates through all the adders and the decoding
section. The maximum processor time for a modular processor that per-
forms inner products would be

t
max

ty + llog, Nmaxwtpp + (tg + t)) + (2tp + llogy mi1tpp + tpp)

+ (tg 4 ty) + Nyl logy miltpy + (Np-1)(Tlogy myltyy + tpp) + tg

(set encoders) + (propagate through encoders) +
(set multipliers) + (propagate through multipliers) +
(set adders and subtractors) +

(propagate through adders and subtractors) + (detect).

If it is assummed that tpp is much smaller than tS or tdr then the
length of the inner product is not a significant factor. The processor

time would then be dominated by the three set times.

(3) Determinant Processor

The evaluation of determinants are useful in the computation of
matrix inverses. They are the sums and differences of multiple products.
The structure of a modular processor to evaluate determinates is shuwn
in Fig. 12. The coefficients of the desired determinant are tapped off

the data bus and used to set all the encoders. The previously derived

mixed radix coefficients are used to set the decoding section. Signals

e e
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propagate through all the encuders in parallel. These signals are used

to set the multipliers. Signals propagate through all the multipliers.
These signals are used to set all the adders. A signal then propagates
through all the adders and the decuding section. The maximum processor

time for a modular processor that evaluates determinants would be

bpax = ts + [log2 Npaxltpp + (tg + t1) +Ng(2tp + [log2 miltpp + tpp)

-t (ts + t1) + Ngllogp myltpy + (Np-1)(T1logp mjltpp + tpp) + t4d
= (set encoders) + (propagate through encoders) +

(set multipliers) + (propagate through multipliers) +

(set adders and subtractors) +

(propagate through adders and subtractors) + (detect),

where N, is the dimension of the determinate.

This processor time is approximately equal to that of the inner
product processor. It is also dominated by three set times. The only
difference is that in this processor, a signal has to propagate through
several multipliers rather than just one as in the case of inner pro-
ducts. The larger the matrix involved the more multipliers have to be
cascaded. If the proupagation time, tpp, is assumed to be much smaller

than that of the set time, t_ it can be seen that the size of the

matrix does not strongly influence the processor time.

(4) Squared Vector Distance Processor

The sum of the squares of the differences of twu vector components
is used as a distance evaluator in many optimizing or decision algo-
rithms. A modular processor to compute such squared distance is shown in

Fig 13. The unique feature is that the signals propagate through a




fixed map before they are added. This map performs the polynomial
transform P(X) = X2. This example is used to demonstrate that any poly-
nomial with integer coefficient and exponents can be used in these pro-
cessors. The maximum processor time for a modular processor that com-
putes such distances would be

tmax = ts + rlogZ Nmax]tpp + (ts + tl) + r1082 mi]tpp +

+ (ts + t1) + Ngllogy myltpp + (Np=1)(Mlogy miltpp + tpp) + tq

(set encoders) + (propagate through encoders) +
(set subtractors) + (propagate through subtractors) +
(propagate through map) + (set adders and subtractors) +

(propagate through adders and subtractors) + (detect).

(5) Influences Of Technology On Processor Performance

As mentioned previously, the expressions for maximum processor time
derived for the various modular processors provide a means of evaluating
the effects of certain technological approaches to certain types of com-

putation problems.

As an example, suppose that the maps were implemented with wire
interconnections and the permutation primatives were constructed using
field effect transistors ( FET's ) as switching devices as shown in Fig.
14, As discussed previously, the other building blocks can be con-
structed from these basic elements. If the set time, ts' is assummed to

be 10 nanoseconds and the propagation time, tp, of each building block
is assummed to be 5 ns. then the throughput rate for inner products of
vectors with 100 elements of arbitrary accuracy would be approximately

rz=1[3(10ns )+ 100(5 ns )]

- 27 =

e v ——




S s e

JATLININd NOILVIAWYAL 14

EA

‘014

- 28 -




= 2 mhz.
This would be equivalent to about 2 million inner products a second.
Since each inner product consists of 100 multiplications and 102 addi-
tions this is equivalent to 202 x 2 x 106 or about 400 million arith- 1

metic operations a second.

The performance of an optical version of the same processor can be

examined in a similar manner. If Bragg coupler technology is considered,

then a set time for each building block of 30 ns and a propagation time

of 200 ps can be assumed. This would result in a throughput of approxi- !

mately

"3
"

1/ 3( 30 ns ) + 100( 200 ps )]

9 mhz.

This rate represents 9 million inner products a second, which is is

T

equivalent to 202 x 9 «x 106 = 1,800 million arithmetic operations a

second.

The high throughput of residue processors used as examples is not
due to the technology but rather the architecture. The set times of 10 |
and 30 ns are quite slow coumpared to the switching times of present
electronic logiec. The throughput is due to both a mathematical and
structural advantage. Mathematically, not having to deal with carries
greatly speeds up addition and multiplication. Structurally, the proces-

sor is highly parallel and very effectively pipelined.
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D. Modular Processors Pipelined By Banks ( The Turtle )

Modular Processors can also be pipelined by banks. This approvach is
referred to as the "turtle" or as a parallal number theoretic processor.
Its structure favors different technologicel traits, The rabbit
approach relies on speed while the turtle approvach relies on parallelism

to achieve large throughputs.

The overall structure of such processors is shown in Fig. 15. The
data to be processed is fed to the modular encoders. The encoded values
are then given to modular processors. The modular results are then fed
to a residue-to-mixed-radix converter. The mixed radix equivalent is
then given to a mixed-to-normal radix eonve;ter that produces a normal

radix equivalent of the answer to the desired computation.

The processor relies entirely on table lookup. The tables can be
implemented with read only memories. A modular 5 addition table is shown
in Table 8. Neither the operands nor the sum ever exceed 4 in value.
The operands and sum can thus each be expressed with 3 bits. This table
can be implemented with a read only memory by combining the 3 bits of
each operand to form an address and storing at that location a 3-bit
representation of the sum. Such a table is shown in Table 9. As an
example, to add 4 and 3 these uperands are first expressed in binary as
100 and 011. These are combined to form the address 100011, Stored at
this location in the memory shown in Table 9 is 010, which is the

modulus 5 equivalent of the sum of 4 and 3.

Similar tables can be constructed to perform modular subtraction,

multiplication , and polynominal transforms for any modulus.
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TABLE 8: MODULUS 5
ADDITION TABLE

ADDRESS CONT ADDRESS CONT ADDRESS couT !

QU0U00 XU 010201  XXXX 101010  XXxx ?

000001 XQ01 010110 Xxxx 101011 Xxxxx -

Juu0ly  Xulo 010111 XxXX 101100 xxxx

GU0ull  Xol1 011600 X011 1011yl Xxxx

000100 X100 011001 X100 101110 Xxxx

000101  XXXX 0110i0 X000 lullll  XXXX

000110 XXXX 6ilGll  Xoo01 116000  XXX¥

000111  xxxx 011100 X010 110001 XXXy

0010u0 X001 011101 XXXX 110010 XXXX |

001001 X010 011110 XXXX 110011  XXxXx 1
001010 X011 Ol1111 XXXX 110100 xxxx }
001011 X100 100000 X100 110101  XXXX

001100 X000 100601 X000 110110 Xxxx |
001161 XxxxX 106010 x001 110111  XXXX

001110 XXXX 160011 X010 111000 XXxx .
001111 XXXX 106106 X011 111001  XXXX |
010000 X010 100101  XXxX 111010 xxxx |
010001 x011 100110 XxxXX 111811  XXXX %
010010 X100 100111 XXXX 111100 XXXX

610011 X000 101G00  XXXX 111161 XXXX

010100 xQ01 161001 XXXX 111110 XXxX

111111  Xxxx

TABLE 9: ROM VERSION OF MODULUS 5
ADDITION

- 32 -

Freoty




(1) Binary to Residue Encoders

Tables to perform encoding from binary to residue notation can be

performed by tables cunstructed using three basic strategies.

One approach is by direct table lookup as shown in Fig. 16(a). The
number to be encuded is used as the address while the content at this
location is the desired modular equivalent. This approach is only prac-

tical for encoding relatively small numbers ( less than !0 bits ).

A second method involves a c¢ascaded approach as shown in Fig.
16(b). The bottom most node performs a direct table lookup to encode a
portion of the number while the subsequent nodes encode other portions
and adds the equivalent of this new portion in a modular manner to the
result from the previous node., This chaining process can be extended to

incorportate any number of bits.

A final method involves a parallel approach as shown in Fig. 16(c).
Portions of a number are encoded by direct table lookup. The equivalents
of these portions are then added together in a modular manner. This

method can be extended to incorporate any number of bits.

These three basic approaches to encoding can be modified to include
the encoding of negative numbers represented in either sign magnitude or

two's complement format.

Once the data has been encoded into their modular equivalents it

can be used to perform computations in a modular manner.

{2) Summation Processor

- 33 -




———

FIG. 16a:
DIRECT ENCODING

Y ——— "
FIG. 16c:
PARALLEL ENCODING

v

" —

FIG. 16p
CASCADED ENCODING

- 34 -




The structure of a modular processor that performs summation for a

particular modulus is shown in Fig. 17. Each of the nodes represents a
read-only memory. The data entering the bottom of a node is used to
form an address. The content of the node at that particular address
emerges at the top of the node. If the modular equivalents of the 16
numbers to be summed are fed to the bottom row of nodes then the modular
equivalent of their sum will eventually emerge from the root node ( top
most node ). Such a processor can be constructed for any modulus by pro-

gramming the ROMs in the proper manner.

(3) Inner Product Processor

A modular processor that performs inner products is shown in Fig.
18. The boxes represent encoders, the nodes with an X represent modular
multiplication ROMs, and the node with a D represents a delay node *.
The modular equivalents of the vectors to be processed are fed to the
bottom row of nodes. The modular eqivalent of the inner product will

emerge from the root node.

(4) Determinant Processor

A modular processor that evaluates determinants is shown in Fig.

|

19. The main difference from the inner product processor is that more |
multiplier nodes are needed. The modular equivalents of the matrix coef-

ficients are fed to the bottom row of nodes. The modular equivalent of

the determinate will emerge from the root node.

% A delay node duplicates the bits of its address on its output at
a later time. This delay maintains synchronization between the
various portions of a calculation su that they merge correctly.
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(5) Squared Distance Processor

A modular Processor that computes the sum of the squares of the

differences between the components of two vectors is shown in Fig. 19.5.

The nodes denoted with a P perform the integer polynominal transform
P(X) = (X-Y)2 #, The modular equivalents of the vectors are fed to the
bottom row of nodes. The modular equivalent of the sum of the squares of

the difference of the vectors will emerge from the root node.

(6) Qther Computations

To generalize, a modular processor can be designed to perform any
combination of additions, subtractions, multiplications, or integer
polynominal transforms. The structure of such a processor follows
directly from the expression evaluation tree of the desired computation.
The expression evaluation tree of the inner product processor in Fig. 18
is showr in Fig. 18.1. The only difference is that a delay node has been
inserted to equalize the terminal path lengths to insure proper syn-

chronization of the different portions of the computation.

(7) Conversion From Residues To Mixed Radix

A given computation is done in a modular manner by several dif-
ferent modular processors. These modular results are then rewoven
together to construct a mixed radix version of the answer. This mixed
radix conversion can be performed by various integer polynomial

transforms [Ref. 1, p 17-25]. The structure of such a converter is

* Other processors can be designed using more complex integer po-
lynominal transforms. The tables required are no more complex that
those required for addition.




FIG. 19.5: MODULAR VECTOR DISTANCE PROCESSOR
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shown in Fig. 20. The nodes on the bottom row represent the root nodes
of three modular processors. The nodes denoted with a P perform the
required polynominal transforms. Delay nodes temporarily store the
coefficients as they are produced. What emerges are the mixed radix

coefficients of the answer to the desired computation.

(8) Conversion From A Mixed To A Normal Radix

The mixed radix version of the answer is sufficient for sign and
relative magnitude determination. In some situations it is desirable to
further convert the mixed radix into a normal radix number. An overview
of such a converter is shown in Fig. 21, E;ch value of each mixed radix
coefficient has a normal radix equivalent. These equivalents are
recalled from storage aad added to produce a normal radix equivalent. To
simplify this addition, a carry save adder strategy is employed. This
reduces, without carries, the equivalents to be added to only two. A
carry propagate adder is then used to add this final pair. The storage,
carry save adders, and carry propagate adder can be implemented in a bit

slice format with read-only memories.

The structure of the storage section is shown in Fig. 22. The
nodes on the bottom row are the output nodes of the residue to mixed
radix converter shown in Fig. 20. The mixed radix coefficients are dis-
tributed to various storage nodes, denoted with an S, that store multi-
bit slices of the normal radix equivalents. The top left three nodes
store bits 11 through 8, 7 through 4, and 3 through 0 of the equivalent

of the mixed radix coefficient a; The other nodes store multibit slices
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of the sum of the equivalents associated with the mixed radix coeffi-

cients a, ap4 a». This pairing and pre-addition technique reduces both

the storage that is needed and the number of equivalents to be added.

The carryv save adder section, which reduces a 3 number sum into a 2
number sum in parallel without using carries, is shown in Fig. 23. The
nodes denoted with an A perform conventional binary addition on multibit

operands. These adders are implemented with tables. A»table for 2 bit

operands is shown in Table T15 of the appendix. Each adder node han-

dles a 2 bit slice from each of the three numbers to be added. It pro-
duces a 2 bit sum and a 2 bit carry. The sum bits from all the adders
are combined to form one number while aliAthe carry bits form another
number. Two zero bits are padded onto the number synethized from the
carry bits to perserve the proper significance of these carry bits. A
sum of 3 numbers can thus be reduced to a 2 number sum. Several such
carry save adders can be used to reduce a sum of many numbers to only a

sum of two numbers.

The remaining 2 numbers are added with a carry propagate adder. A
carry propagate adder is shown in Fig. 24. The two numbers are added in
multibit slices from least to most significant slice. This allows a
carry to propagate between the slices. The nodes denoted with an A are
the same binary adders used in the carry save adder. The nodes denoted
with a D are delay nodes to delay slices of the operands until they are
needed. Delay nodes are also used tu delay slices of the sum so that

they emerge in synchronization.

(9) Synchronous And Asynchronous Turtle Processors
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An overview of a turtle processor designed to perform summation is

shown in Fig. 25. The bottom row of nodes consists of encoders. The

next two rows consists of adders. Each of three clusters of nodes at
the bottom represent different modular processors. The fourth and fifth
row form the residue-~to-mixed radix converter. The sixth row contain
the storage units for the mixed-to-normal radix converter. Since in this
simple example there are only two normal radix equivalents to be added.
a carry B3ave adder section is not necessary. The top & rows of nodes

form a carry propagate adder.

This version of the processor is designed for syrchronious opera-
tion. The ROMs used in the processor must either be input or ovutput
latchable. The data to be processed is fed to the bottom row of
encoders, On a clock signal these memories are read and the results are
used as the inputs for the next row or ROMs, The data for another com-

. putation is then fed to the encoders. On each subsequent clock cycle the
data of a particular calculation proceeds to s.. “~quent rows of the pro-
cessor in a Roman-phalanx- like manner. The results of each calculation
will eventually emerge from this pipelined processor. The throughput

rate would be the recriprocal of the ROM cycle time.

A version of the processor can also be designed for asynchronous
operation. Such a structure is shown in Fig. 26. 1In this case the ROMs
are not latachable. The data for a particular computation is placed at
the encoders. The results just propagate through the system, There are
many races but since there is no feedback or memory in the processor

- none of the races are critical. The answer is derived in a Darwinian

manner, The unit can be viewed as one large combinatoric circuit,
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Any computation involving any combination of additions, subtrac-

tions, multiplications, or integer polynominal transforms can thus be

accomplished with a combinatoric circuit.

(10) Example Qf A Turtle Processor

As an example of how such turtle processors would ovperate, the
tables representing each of the nodes shown in Fig.» 25 and 26 are
included as tables in the appendix. An example of the sum of 13 + (-11)
+ 7 + (~17) is shown in Table 10. In six bit two's complement, this sum
is expressed as 001101 + 110101 + 000111 + 101111, Table TS5 is used to
translates these values into their modulué 5 equivalents of 011, 100,
010, and 011, 011 and 100 are then combined to form the address of
011100 which is translated by table Tt into the modular sum of 010. 010
and 011 are summed in the same manner to produce 000. These two results
are then summed with table T1 to produce 010. Tables T6 and T2 perform
this same prucedure for modulus 7. The result is 110, Tables T7 and T3

perform this same procedure for modulus 8. The result is 000.

The modulus 5, 7, and 8 results of 010, 110, and 000 are converted
to mixed radix by tables T8, T9, and T10. The modulus 5 and 7 results
are combined to form the address of 010110. Table T8 translates this
into 101. The modulus 7 and 8 results are translated by table T9 into
110. These results are then combined to form an address of 101110,

which is translated by table T10 into 111, This produces the mixed radix

coefficient a, - g1p,

ay = 101, and ap = 111, Table T11 then produces
the normal equivalent of a, ynich is 0010. Tables T12, T13, and T

produce slices of the normal radix equivalent associated with the pair
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DXAMPLE

13 + (-11) + 7 + (-17) =
001101 + 110101 + 000111 + 10111

HMOD 011 + 100 + 010 + Ol 15
010+ 000 1
610 1
. MOD 7 110 _+ 0N + 000 + 100 16
010 + 160 12
o 12
MOD 8 101+ 101 + 101+ 1N 17
010 + 110 13
000 13
. MOD 5 MOD 7 MOD 8
010 110 000 :
w\_\] ' 3
010110 010000
18 19 :
101 110 i
101110
1o
. m 1
‘ 4 !
3, =010 a2, =101 a2, = 1M ?
2,(3:0] = 0010 m
2 = 0010
0 .
3,2,[11:8] = NN T2 g
ajas[7:41 = 11 T3 :
aya5[3:0] = 0110 T4 .
Y = 1mmnole —= i
Noe }'
¢+ _____0o0io ! 4
TITNTI1600 |
0o[oo{co[oo]o1 {00
nn oo
+00[00 [00}00[09 (10 s
N oo
111111111000 = -8
=13+ (-N) + 7+ (-17)
TABLE 10: EXAMPLE OF NUMBER N

THEORETIC PROCESSOR
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of coefficients a, and ap., The result is 111111110110, These two

normal-radix equivalents are then added with binary adder nodes, as
represented by Table T15. The least significant slice of this sum is
00, 10, and 10. The 00 is the result of a null carry in for the least
significant slice. These operands form an address of 001010. Table T15
translates this into 0100. The first two bits are used as a carry slice
while the last two bits form the sum slice. The carry is used as an
operand in the next more significant slice. The operands of this slice
are 01, 01, and 00, Table T15 produces a result of 0010. 00 is used as a
carry while 10 is used as the sum. This process is continued for the
other slices. The result is 111111111000, which is -8 in 12 bit two's
complement. This is the result of the de;ired sum of 13 + (-11) + T «+

(-17).

(11) Accuracy

The processor is constructed entirely from 64 by 4 bit ROMs. It has
a range of =140 to 139. By using larger ROMs larger moduli can be

represented and thus larger ranges can be achieved.

If 1024 by 6 bit ROMs are used, then the moduli 32, 29, 27, 25, 23,
19, 17, 13, 11, and 7 can be used giving a range of 144,U403,552,893,600

which is about 2“7.

If 4096 by 6 bit ROMs are used, then the moduli 64, 61, 59, 57, 53,
51, 49, 47, 43, %1, 37, 31, 29, 25, 23, 19, 17, 13, and 11 can be used.
This would give a range of 127,290,734,521,737,197,468,723,265,600 or
about 296, Larger ROMs can be used to achieve even greater ranges if

desired.
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The concept of range is different in a residue number system. An
intermediate computation may exceed this range. It is only necessary
for the final answer to be within the range before it is converted into
a mixed radix number. In the literature this property is called "com-
pute through overflow". Thus the range need only be sufficient to

represent the answer. This can greatly reduce the range required for

certain types of computations.

(12) Throughput

A processor designed to compute inner products of 100 element vec-
tors where each element is 20 bits long, can be counstructed entirely out
. of 1024 by 6 bit ROMs. If the cycle time of each ROM is 300 nanoseconds

then 3.3 million inner products can be performed a second ( 1/{300 ns.]

). Since each inner product consists of 100 multiplication and 102 addi-

. tions this is equivalent tu 663.3 million arithmetic operatiorns a

second. The latency of each inner product would be 12.3 microseconds.

A processor using the same ROMs can be designed to perform inner

products on 1000 element vectors, where each element is 18 bits, at the
same throughput rate of 3.3 million inner products a second. In this |
case each inner product consists of 1000 multiplications and 1013 addi- A !
tions. This would be a throughput of 6.71 x 109 arithmetic operations a ‘

|
second. The latency would be 13.5 microseconds ¥. :

(13) System Fabrication

# As a rough reference of throughput an IBM 370 can process about
4 million instructions per second. Processors such as the CRAY - 1
and the ILLIAC IV can do up to 100 million instructions per second
in short bursts,




These processors can be constructed in a modular manner. A large

portion of the design of a conventional processor is consummed with the
layout. The typical procedure involves partitioning the circuit, laying
out the boards and specifying the blackplane interconnections. The tur-
tle processor is constructed entirely with 2 input and 1 output nodes, 3
input and 2 output nodes, and their interconnections. The nodes and
interconnection cables can be mass manufactured. The basic modules are
shown in Fig. 27. The top two modules represent different types of
nodes. On the bottom row the 1 input, 2 output module is a forked cable
which duplicates a signal. The 1 input, 1 output module is an amplifier.
Standardized cables would carry the information signals as well as util-
ities, such as the clock signal and the power between the modules. The
construction of such processors is reduced to specifying the pattern of

the nodal interconnections and the programming of the ROM of each node,
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E. khat Has All This To Do With Optics?

The turtle processor performs many table lookups in parallel during
each cycle. Optical methuds capable of performing many table lookups in
parallel can be conceived. The fundamental device in such an optical
processor would be an optical RCM, It is important for such a device tou
produce an output that can be used as an input of another such ROM. In
other words, it should "produce what it eats". In optics the basie
informati n-carrying mechanisms are intensity , phase, frequency, or
spatial distributions of these quantities. A ROM based on intensity
would have to have as inputs various intensities and produce a predeter-
mined output intensity. No convienent implementation based on either

intensity, phase, or frequency has yet been found.

(1) Optical ROMs

The must promising apprvach for an optical ROM is based on embed-
ding information on the spatial domain. The input operands of such a
device would be intensity distributions of light, I(x,y), and the output
of the ROM would also be an intensity distribution of light that could

be used as an input operand for another such ROM,

A block diagram of an optical ROM is shown in Fig. 28. Two or more
images, Iin(x,y), would be ANDed together to form an uniaue image,

Iaddr(x,y). This image would be used to address an associative memory to

produce an output image, I  .(x,y). This image could then be used as the

input for another such ROM.

(2) Optical ROM Addressing
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The fundamental operation of locating or addressing anything any-
where, whether it is in a computer memory or on a road map, is the "AND"
operation. An address of 011 in a computer means that the 22 bit of the
address is 0 and the 2! bit is a ' and the 20 bit is a 1, Unfortunately,
optical ANDs cannot be performed in a convienent manner; however an opt-

ical "OR" can.

If two or more binary images, I(x,y), are projected on a common
surface and thresholded, then the result will be the union or "OR" of
the two images, as shown in Fig. 29. With the help of some negations (
contrast reversals ), the ORs can be used to perform ANDs by means of
DeMorgan's law , A AND B = NOT( NOT A OR NOT B ), as shown in Fig. 29.
The images tu be ANDed are first inverted in contrast. These images are
then ORed by prujecting them on 3 common surface and thresholding. The
image on the surface ;s ‘ren {nverted |n contrast. This results in the

AND of the orginal 1magea.

It 1s 1mportars - - % ¢ tre papgt 1mages form a unique out-
put 1image. trevw e o e Lt treen g0 confuse the memory. This
uniqueness ~ar re - . - ** *re .npry* o 1mAages as shown in Fig.
30(a). Suppese .t . ..o, .o« wiw zontal dark bars could each
only be in one ¢ ¢ v o o~ Tre L mroeraion of the OR of any of the
possible vertical pat*erra o;*» 4~y f *ne possible horizontal patterns
will result i1n a un;7us [ a*terr. Tris pattern happens to be a point

source that will provide a -onvienent address image for an associative
memory. The five verti~al and five horizont:l patterns are sufficient

tuo each represent modulus S operands.

Images of the form of a dark vertical or horizontal bars are
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suitible as inputs for any two input ROMs. This type of ROM is suffi-
cient to construct encoders, modular processors, and the residue-to-
mixed radix converter. If it is desired to completely convert the
result back to a normal radix, then 3 input and 2 output ROMs would be
required. This necessitates a larger variety of input and output

images. Such images are shown in Fig. 30(b). They have a cyclic struc-

ture. If the frequencies of the images are pairwise relatively prime,

then the OR, and negation and thresholding of such images will also form

a unique point source image suitable for use as an address.

To generate the address image, the inversion of the OR of the input
images has to be accomplished. Several physical mechanisms can be used

to accomplished this. One method uses the Hughes Liquid Crystal Light

Valve.

One surface of the light valve is light sensitive. A distribution
of light on this surface will modulate the electric field across the
liquid crystal. This electric field in turn modulates the birefringence
of the liquid crystal. This change in birefringence rotates the axis of
polarization of a polarized read light beam impinging on the other sur-
face. The reflected light is analyzed with a povlarizer. Depending on the
orientation of this analyzer the resulting image will either have normal
contrast or reversed contrast when compared to the image on the input
surface. The light valve would be used in a binary mode to achieve
thresholding. It is assummed that the bright portions of each input

image would be sufficient to saturate the photoconductor.

(3) Optical ROM Storage
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The associative memory of an optical ROM must associate an address
image with an output image. Such a memory can be holographic. The com-
plexity of the memory is considerably simplified by using address images
that are unique point sources. The output images to be associated with
a point source address image are of the form shown in Fig. 30(¢). If
only mixed radix results are desired, then images of vertical or hor-
izontal dark bars would be sufficient. If conversion to a normal radix
is desired, then images with a cyclic or puint-source pattern would be

necessary.

The operation of such a holographic ROM is shown in Fig. 31. Two
or more input images would be projected on to the surface of a Hughes
Liquid Crystral Light Valve. This image would then be inverted in con-
trast to form a point source address image. This point source would

address the hologram to produce an output image.

(4) System Integration

Many of these ROMs can be placed side by side on a common surface.
Each portion of the surface denoting a ROM would OR its own input
images. All the ORs of all the ROMs would be inverted at the same time,
Each ROM will then have an appropriate address image for its correspond-
ing hologram. Rather than having a mosaic of holograms, the holograms
for all the ROMs can be amalgamated into one large hologram. This can
be done since the address images of each ROM remains spatially unique
even though the ROMs are placed side by side. Each point source address

image will produce an output image. Spatial offsets can be incourporated

into these output images. The output images can be positioned to be the




Hologram

%Output Image 1

Inversion

Output F
Images

FIG. 31: HOLOGRAPHIC ROM
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input images of other optical ROMs. The holograms would thus not only

store the information but also distribute it.

In order to construct an optical turtle processor, the output of
the ROMs must be used as inputs of other ROMs. What is desired concep-
tually is shown in Fig. 32. The output of the ROMs would be delayed a
sufficient amount of time to allow the inversion mechanism to recycle.
These delayed output images would then be used as input images. Unfor-

tunately the slow recycle time of the inversion mechanism makes this

approach impractial.

An approach using a twin set of ROMs is shown in Fig. 33. One
group of ROMs is read and used to provide the input to the other group,
and vice versa. The light passing through the hologram on the top left
produces input images for all the ROMs on the light-sensitive side of
the light valve. A pclarized read light reflected from the light valve
and analyzed by another polarizer produces a contrast inverted image of
the entire surface. TheQe point sources, reflected by a mirror, are used
to address the hologram on the bottom row. This produces the input
images for all the ROMs on the bottom light valve. Another read light is
used to generate the inversé of this image, which pruduces the address

images for the hologram on the top row.

The two ROMs with their light valves are organized in a two cycle
approach. One light valve is used to write the other, and then vice
versa. The delay or latency of the light valve is used as temporary
storage, This keeps the system going, much like how a flywheel is used
in a two cycle engine. ( This configuration is referred to as a "torus

turtle”. ) A three cycle or Wankel approach using 3 ROM banks con be
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considered if the latency is not sufficient. This approach can be
extended to n cycles, as might be necessary to accommodate the long

recovery time of the inverting mechanism in some technologies.

The optical processor as shown in Fig. 33 can be simplified by
using reflective holograms to replace the mirrors as shown in Fig. 34.
These reflective holograms can be constructed to be oriented at an arbi-
trary angle. This would lead to a further simplification as shown in
Fig. 35. This sandwich structure would be simpler, more stable, and

more compact,

In all the optical turtle processor configurations the input data
is represented by an image that is projected on a portion of the ORing
surface of a light valve. The output is represented by the image that is
reflected from a portion of the ANDing surface of the light valve. LED's
and optical masks can be used to translate conventional input data into
images of the form shown in Fig. 30(a). The output images of the form
shown in Fig. 30(c¢c) can be translated by photodetectors into conven-

tional electronic output.

The question remains as to how many ROMs are possible. This depends
on the storage capacity of the hologram. The situation is similar to
that of holographic optical memories. The required spatial bandwidth of
each ROM is minimized by the use of point source addresses. For a ROM
representing a modulus of 32 a field of 32 by 32 possible point source
address would be needed. Each of the point sources must be asociated

with an image of 32 by 32 elements.

(5) Why Qptics?
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The optical version has some unique advantages. The functions of
addressing, storage, and distribution of information are all done in
bulk. Making 100 gptical ROMs should not be much more complex than mak-
ing 10 ROMs. This approach could potientially benefit from economies of
scale. Another advantage is that such a processor might be easier to
mass manufacture, since reproduction of the holograms would be a photo-
graphic process rather than one of assembly, as electronic versions
would be. A final point is that the use of optics considerably simpli-
fies the communication problem. Optical signals can pass through each
other without interference. They do not have to be shepherded arovund
with wires as in the electronic version. Conventional wiring contributes
an appreciable amount to the complexity and volume of current proces-
sors. A complete optical processor offers the hope of a more compact and

easier-to-~fabricate processor.

The optical version does have a serious disadvantage. The
throughput rate of such a unit is basically the recriprocal of the cycle
time of the contrast inverting mechanism. Currently the most available
unit is the Hughes Liquid Crystral Light Valve (LCLV) which has a cycle
time of about a millisecond. To make such a processor viable in terms
of throughput, many points have to be processed in parallel to compen-

sate for the slow cycle time.

The relative merits of an optical and electronic approach are dep-
icted in Fig. 36. The increase of complexity of an electronic version
with increased throughput can be predicted quite accurately. Admitt-
tedly, an optical approach has a high initial overhead, but its increase

in complexity with increased throughput is unknown. The throughput at
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which optics overhead would be completely amortized is another open

question. Electronic versions of the turtle processor will become more
and more significant because of their outstanding throughput, cost
effectiveness, and modularity. Larger and larger systems will be built.

The possibility of an optical approach will continually haunt this

growth,
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ITI. RESEARCH ON RESIDUE ERROR DETECTION AND CORRECTION METHODS

A. Overview

The optics community is interested in research on the design of
optical systems capable of data computation. One approach of present
interest is based on the nature of arithmetic operations (addition and
multiplication) in residue number systems [Ref. 1]. Reéidue number sys-
tems have desireable properties. Most significantly of these, perhaps,
is that residue additions do not involve carry operations. The hope is
that the natural parallelism of optical systems can exploit the fact

that no carries are necessary,

Unfortunately, residue number systems also have very undesireable
properties. The worst of these is: a small error in an analog process
used to perform a residue addition may result in large error in the
result of the residue addition. The intrinsic nature of this error pro-

cess is discussed in the (3) On Noisy Residue Operations (Section B).

To date most research has focused on the design of physical sys-
tems that perform basic "residue operation" such as the mod operation or
addition mod some moduli. There has been little published material on
the development of a general mathematical system based on residue number
systems capable of incorporating error detecting/correcting operations.
The purpose of this paper is to make the following three contributions

towards the development of such a general mathematical system,

First, a general mathematical system capable of characterizing (i)
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any mathematical operation performed in a residue number system and (ii)
all error detection/correction methods is constructed. This construc-
tion is undertaken in Sections B, C, and D and completed in Section E.

The main result is found in the subsection (3) The Error Checking System

(Section D).

Secondly, and importantly, a methodology for research into the
intrinsic capabilities of all possible error detecting/correcting

methods is proposed. This is done for the most part in Section E.

Finally, 1in Sections D, F, G are found examples of error
detecting/correcting methods. The special example indicated in the
abstract is in "Example: Special case of redundant encoding™ (Section

F).

In addition to the three contributions above, this chapter
discusses in a heuristic way concepts of system complexity and cost.

This discussion begins in the subsection (4) Some Heuristics About An

Error Checking System (Section B) with a few brief comments.* The topic

of cost and complexity continues in the examples of error-checking
methods given in Sections D, F, and G. The importance of defining phy-
sically meaningful complexity measures is discussed in the subsection

(5) Statement Of Research Methodology (Section E) and in the Summary

(Section H).

The major topics developed in this paper are briefly summarized in

Section H.

*  Wirror-checkingm 1s a phrase used through out this paper to in-
dicate a particular kind of system. Error-checking systems are
those systems capable of any type of error detecting and/or
correcting, i.e., capable of any type of "check" for errors.
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B. A FIRST STEP TOWARDS AN ERROR CHECKING SYSTEM

(1) The Basic Mapping T

We are interested 1in performing a given mathematical mapping
{operation). In this chapter the mapping to be performed will always be

denoted by:

T A the given mapping.
The domain and range of T is always 3 finite set of nonnegative integers

x:

Domain T = Range T = X = {0,1,2,...,M-1}
where M-1 is the maximum element of X. In the remainder of this section
(and paper) we will take the viewpoint that the mapping T accurately
deseribes the input/output relationship of some physical system designed
to realize the mapping T. The symbol T will serve double duty: (i) it
will stand for the mathematical mapping in a rigorous sense and (ii) it
Wwill represent the physical system designed to perform the mapping T.

Wnich usage is intended will be clear from context.

(2) The Decomposition of T

In order to take advantage of the desireable properties of residue
number systems, the operation T maybe decomposed into the 3-stage pro-

cess:

x B0 r(x) 0Py w(x) D& T(x). (2.1

The brief discussion of this process that follows is not intended to be

mathematically rigorous. 1Its purpose is only to give a quick overview

———————— e
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of the process. Definitions and descriptions that need to be

strengthened and made rigorous are deferred to the remaining sections.

First, the operation En "encodes" the integer input x into a nxt
"residue vector” r{(x). This residue vector r{x) is just an ordered col-

lection of elements whose form is x modmi for i=1,2,...,n.%
Definition for r(x)

The residue vector r(x) is the integer input x encoded by the

operation En:

:x modm1§
:xmwmﬁ
En ] '
X ———>» r{x) = ! . ! (2.2)
] ]
[l . ]
;x modn;

where the set of moduli M = {mi such that i=1,2,...,n} are pair-

wise relatively prime and the range M of the set M is
n
M= TTmi.
i=1

After the input x has been encoded to the residue vector r(x), the
operation OpT performs an operation on the residue vector r(x)
equivalent to T's operation on x., The operation OpT is equivalent in
the sense that T(x) can be determinded from the intermediate output

t(x)=0pT(r(x)).

¥ A "residue vector™ is any vector of the form used to define the
residue vector r(x)., Note that because the elements of the moduli
setM are all relatively prime by definition, there is no "redun-
dant" information (with respect to mod operations) about the
scalar input x in the residue vector r(x).
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Definition for t(x)

The operation OpT maps the residue vector r(x) to the residue

vector t(x):

ET(x) modm15
;T(x) mOdeE
r(0) —2T e 2 ey = 0L (2.3)
(T(x) hodm i
i n;

This mapping represents the mathematical operation to be performed,

i.e., addition, subtraction, etc.

In the third and final stage the operation De "decodes" the residue

vector t(x) to the value T(x).

It is significant to note that any mapping defined on an integer
set 1= {0,1,2,...,M=1} to the same set can be realized by this decom-
position. In essence, then, the first purpose of this paper is half
completed:  the 3-stage process described in (2.1) can characterize any
mathematical mapping (operation) performed in a residue number system

with range M.,

But what about the errors? ¥hy, how, and where do they arise?
What is there nature? The "why and how" is a topic not treated in this
chapter. The "where" and what to do about it is the primary topic of

interest.

(3) On Noisy Residue Operations

First, consider a "noisy" encoding process En:
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x —En r(x) + e(x) = r'(x) (2.%)
where e(x) is a nx)1 random vector., More will sgid about the nature of
e(x) in the following sections. Suffice it to say now that the form of
the noisy residue vector r'(x) remains suitable for input to the OpT
operation, i.e., r'(x) 1s itself a residue vector. In addition to a
noisy encoding process En, the OpT and De operations might be noisy.

More will be said about these cases in the following sections.

With the introduction of possible error in the encéding process we
come to> a key issue: How will a nonzero error vector e(x) affect the
output of the 3-stage process described in (2.1)? Without going into
great detail at this point, it is possible to demonstrate that in gen-
eral the error in the output is "not well behaved," As an illustration
of what "not well behaved" means in a heuristic sense consider the fol-

lowing example.

Example.

The process below encodes with a noisy encoder En and then decodes

with a perfect decoder De:

x —E0 o r(x) + e(x) D& o x +Dele(x)). (2.5)

The decoding operation can be realized as

y=1I

M . . .
2m b (y modm, +error in ith residue)] modM (2.6)

i

"Moo

where the bi' iz1 to n, are a set of integers and all m, are contained

in the set of moduli used to encode x.

Suppose the input x = y = 0 in (2.5), then using the decoding for-

mula in (2.6) the the decoded noisy output is given by




De(r'(x)) = x + De(e(x)) = 0 +Del(e(x})) =

n
=[2 ﬁi-bi-(0+error in the ith residue)] modM
iz
oM . . .
=12 E_'bi°( error in the ith residue )] modM. (2.7)
i=1i

The result displayed in (2.7) demonstrates clearly that if just one of
the residue elements x mczdm.1 is in error by only 1 the decocded number is

off by a multiple of the factor (ﬁi modmi) modM!  Hence a small error in
i

the encoding process (the residue x modmi is off by 1) can lead to large
error in the output (the result is off by some multiple of the factor
(ﬁi modmi) modM)., In principle, errors in the operation OpT will exhi-
i

bit the same type of behavior as that discussed sbove.

In what ways may errors like those described in the above example
be detected? In what ways may such errors be corrected? Sections C, D,
and E, develop a mathematical system whose structure will allow meaning-

ful and definite answers to these questions.

(4) Some Heuristics About An Error Checking System

It is interesting to note that even before one undertakes the
developement of any particular system one can deduce some important
facts about the general nature of such a system, First, we expect the
"cost" of any system to be proportional to (i) the probability of error,
(ii) the nature of the possible error and (iii) the overall complexity
of the physical system. Secondly, any physically meaningful cost cri-
terion will certainly be based on some measure of system complexity.
This measure of complexity will, in general, take into account difficul-

ties in (i) realizing given types of mathematical operations in a




physical system and (ii) interfacing the necessary operations, Finally,
at this point, it seems reasonable to expect there will be many dif-
ferent conceptual approaches to realize error-checking. Thnese different
conceptual approaches will demand at least some differences in the phy-
Sical systems designed to realize these approaches. Therefore, what we

mean by system complexity will probably have a significant impact on the

"costs" of different approaches.




C. Second Step Towards An Error Checking System

(1) The Basic Process

Shown in fig. 3.1 is a block diagram representation for the 3-stage

process

x —E0 o r(x) —OPT . t(x) P& 5 T(x) (2.1) ,
_ discussed in Section R, The scalar input x is encoded to a residue vec-
tor r(x). The residue vector r(x) is then transformed by OpT to the i

residue vector t{(x). The vector t(x) is decoded by De to the output

T(x). The basic process in fig. 3.1 has no explicit "error-checking"

capability.* So, if any of the operations are error prone there is no
way to check errors. It is possible, however, to develop a system that

is derived from this basic system and is capable of error-checking,

. (2) Introducing Error Checking Operations

As a first step towards developing this error-checking system, two
operations will be added to the basic process. The result is the
error-checking basic process in fig. 3.%¥* Can it be this simple? Can we f
expect to accomplish error-checking simply by adding on the operations

OpFn and "something?(related to T)."

The answer, clearly, is no, As given in the fig. 3.2 the new

operations "look" only at the noisy residue vector r{x)+e{(x) and the %
¥ The phrase " error-checking" is used through out the remainder i
of the paper in place of the longer phrase "error ;
detecting/correcting." '

*%  The decoding operation De will be assumed to be error free
through out the remainder of the paper.




noisy residue vector t(x)+e'(x).* The way the encoding process En was

defined in (3.2) does not allow for any redundancy in the residue (mod)
encoding. The only "information" OpEn has about x is the noisy residue
vector r(x)+e(x), Similiarly, the only information the operation
"something?(related to T)" has about T(x) is the noisy residue vector
t(x)+e'(x). 1In order for the operation OpEn to check errors in the
encoding of x to a residue yector, there must be some input to OpEn

other than just the noisy residue vector r(x)+e(x).%*

(3) Introducing Pre-encoding

This leads us naturally to the concept of "pre-encoding." Pre-
encoding is discussed in the beginning of Section D and again in Section
E. In order for an error-checking operation OpEn to accomplish any
error~checking, the operation OpEn "needs" more information about x than
just the noisy residue vector r(x)+e(x). The purpose of a pre-encacding
operation is to generate different and independent information about x.
This new information is used as additional input to some modified
error-checking operation BbEn. The new information is assumed to be

error free,

¥ The vector e'(x) is a random vector whose affect on t(x) is
analogous to the affect the random vector e(x) has on r(x) (dis-
cussed in Section B),

%% In principle, the general description and structure of the
error-checking operation OpEn given in Section E is sufficient to
define a suitable error-checking operation OpT. In order to
economize on words and simplify the structure of the paper, atten-
tion is focus¢. mainly on OpEn. This does not imply a lack of
generality,
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D. Final Step Towards An Error Checking System

(1) The Basic System

The basic structure of the system illustrated in fig 4.1 is almost
the same as the structure of the simple system developed in Section B
and shown in fig. 3.1. In comparing the two systems, one can see that
the only real difference in the structure is the addition of the opera-

tion $}eEn which pre-encodes the input x.

In place of the integer input x we now have a vector X:

~
X _M*‘i.

The vector X should be thought of as a kx1 vector which "carries" infor-
mation about the number x. The dimension k and the specific form of the
individual elements in X is not discussed again until Section E (in (2)

Towards Defining X ). The kind of information X may carry about x is

quite general: Whatever one mignt dream up and be able to encode. For
example, ¥ maybe the input x repeated, some function of x, number
theoretic properties like evenness/oddness or primeness. Following the
pre-encoding step the vector ¥ passes through the remaining stages in a

way analogous to the integer input x passing through the stages of the

process shown in fig. 3.1.

(2) Description Of Basic System

First, ¥ is encoded by the encoding process Eﬁ:

~

¥ __Eo o 7(x)

where F(x) is some vector that takes the place of the residue vector
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r(x). In place of the original residue encoding process En is the
encoding process En that encodes in part by mod operations and in part
by a set operations that are necessary for error correction/detection,
The vector F(x) contains all the information about x available to the

system, It passes through the operation BpT:

F(x) _0pT o T(x).

The vector t(x) contains all the information available tc tne system

about x and T(x). Finally'z(x) is decoded by the decoder Te to T(4):

Tx) —DPe o T(x).

It should be noted that the output of the decoder will in general really
be some vector whose elements contain T(x),x and any otner information

in the pre-encoded X vector. This then is the nature of the basic sys-

oo YRR Ty T

tem. What will be added to this system for error detecting/correcting?
What purpose does the pre-encoder ?reEn really serve? These questions

. are handled next.

(3) The Error Checking System

In fig 4.2 is the error-checking system, One can see that the
basic system has been altered by eliminating any explicit mention of a !
decoding stage, relabelling thne BbT stage to ?: and adding two new error
checking operations 6bEn and BbT.* What are these error-checking opera-

tions BbEn and abT? How do they relate to the still mysterious pre-

v =8

encoding operation PreEn?

* The decoding process De is not explictity shown for the sake of
implicity. The operation is, in principle, identical with the 4
pT operation in fig. 4.1, The label is changed only to facili-

tate other notation,
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Discussion of EpEn and PreEn

The operation'BpEn has as its input the veétor F(x). This vector
hopefully contains the correct encoding of the input vector x. The
operation OpEn is constructed so that any "inconsistencies" in the
encoded information about x in F(x) can be detected by examination of
BbEn's output., Note that in general, the pre-encoding process F%eEn
" and the error-checking process BbEn are highly related. Any particular
choice for a pre-encoder certainly will be influencedAby ideas about
what types of operations BbEn are (i) mathematically interesting, (ii)
conceptually powerful, (iii) physically realizeable and (iv) feasible
under some cost criterion, Perhaps it will be instructive to give two
straignt-forward examples of error-checking operations. The nature of

PreEn and BbEn will be described in each case.

Example one

This example shows "odd shift" errors can easily be detected. What

are odd shift errors?

Definition for odd shift errors

Suppose a scalar input x is encoded by a noisy encoding pro-
cess to the residue vector r(x)+e(x) and then decoded to the scalar
x+De(e(x)). If De(e(x)) is an odd number then by definition r(x)
(or equivalently x) has undergone an "odd shift" error in encoding.

How can such errors be detected? If the set of moduli used to encode x

are 21l odd, such detection can be accomplished by generating the addi-

tional information x mod2.
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As a special case consider encoding the 1 domain ={0,1,2,...,8} by
using only one modulus = 9. The 1 domain, x mod9 and x mod2 are dep-

icted below in Table ITI.1.

x ¢ 01234567819 10...
xmod9 : 0123456781910, ..

xmod2 : 0101010101 0., .

Table III.?

What happens if x mod9 undergoes an odd shift error? Without loss of
generality suppose x were 0. Then x should encode to 0 mod9 and 0 mcd2.

Suppose however x mod9 encodes to one. We now have a residue vector

1x mod9

Pl = 1x mod2

T
0.

But upon examination of Table III.1 we see that this residue vector does
not correspond to any input value in the input domain 1. Therefore the
information about x in F(x) is inconsistent.® The example used was
x mod9=1, By examining Table III.1 one can see that the information in
the residue vector would be inconsistent if x were encoded to
x mod9=1,3,5, or 7. One can also convince oneself by using examples of

one's own that all oddshift errors for any x ¢ 1 input can be detecte,

Tne pre-encoding process involved encoding x mod2. The error-
checking operation BbEn decides if the information in F(x) (in this case
F(x) is still a residue vector) is consistent. This can be accomplished

by using a polynomial transformation with 2x3:=18 degrees of freedom

* Notice that this F(x) does correspond to the integer 9 €1, That
is, if we had encoded the 1 domain = {0,1,2,...,17) with the
moduli set 2 and 9 then the F(x) would not be inconsistent,




(DOF) .* The increase in system cost for this type of error-checking

should be expressible as something with the form:

Cost of error-checking + cost(x mod2 operation) + cost(BbEn with 18 DOF),
System cost is also decreased, however, due to the elimination of cer-

tain error types. The remaining cost due to errors has the form:

Cost after error-checking = cost(even shift errors). %%

It is not necessary to restrict the residue encoding process to 1
modulus. Any set of relatively prime odd moduli used for encoding could
be checked for odd shift errors using a perfect x mod2 encoding. The

increase in system cost would be of the form:

Cost of error-checking = cost( x mod2 operation)

] ~
+ cost(OpEn with 2 M DOF).

Example two

This example demonstrates that all errors except "multiples of a
particular type of redundant modulus" can be detected easily. What form

do these redundant moduli take? Usually when one says two moduli M, and

M, are redundant one means that m; and mp have common divisors. The

type of redundant moduli used here are those for wnhich one divides the

other, e.g., m ;.3 ang mo=z9,

As a special case consider the same 1 domain as in example 1 and

% There are 2x9=18 possible iaputs to abEn.

#% T am assuming the nature of the error process is such that er-
rors are more or less uniformly distributed over the input domain
X. :
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encode x mod9 and x mod3. The 1 domain, x mod9 and x mod3 are depicted

in Table III.2 below.

x ¢ 012345678 1910...
xmodd ¢ 01234567810 1. ..

xmod3 ¢ 01201201210 1. ..
Table III.Z2.

Now what happens when x mod9 is incorrectly encoded? Without loss of
generality suppose x were 0. Then x should encode to 0 mod9 and 0 mod
3. If x mod9 encodes to 1,2,4,5,7, or 8 this will be inconsistent with
the value for x mod3=0, Therefore error can be detected in these cases.

Error can not be detected if x mod9=3 or 6.

As an aside, note that if the error process were such that the
encoded residue x mod9 could shift from the correct value by only 1,
then all errors could be detected and corrected using the additional
information about x contained in the residue x mod3. This special case
is discussed more fully and generalized in "Example: Special case of

redundant encoding" (Section F).

The pre-encoding process involved encoding x mod3. The error-
checking operation BbEn decides if the information in x mod9 and x mod3
is consistent. This can be accomplished by using a polynomial transfor-
mation with 3x9=27 DOF. The increase in system cost for this type of

error-checking takes the same form as that descibed in Example 1,

It is not necessary to restrict the residue encoding process to

only one modulus., Many sets of relatively prime moduli used for encod-

oy




ing could be checked for errors using an error-checking set of moduli
with a smaller range. The technique requires only that the set with
the smaller range be relatively prime and that the smaller range, call
it S, divide the range of the set used for the encoding. The range of
the encoding set was defined in Section B as M. Hence, S must divide
M.* All errors in the ¢ domain = {0,1,2,...M=1} can be detected except
those of the form:

X + kS, k=1,2,3,....
The increase in system cost should be of the form:

Cost of error-checking = cost(encode x with error-checking moduli set)

+ cost(OpEn operation with S M DOF) . **
Discussion of EET

The error-checking operation abT is constructed, in principle, the
same way the operation BbEn is constructed. We know what operation T on
x we want to perform. The nature of T and the design of the pre-encoder
and BbEn "designs fbr us" the necessay T operation, Based on the vector
output t(x), the error-checking operation OpT checks for any incon-

sistencies in the transformed information about x in t(x).

General Discussion

Note that in general, one would probably not construct any of the

operations, F}eEn,En, ?, EpEn, or BbT without giving careful considera-

* The range S is the product of all the moduli in the error-
checking set of moduli used to check the encoding.

#% Tt turns out that the error correcting method discussed in "Ex-
ample: Special case of redundant encoding" (Section F) has a sig-
nificantly smaller cost than that suggested by this formula,
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tion to the ways all the operations may interrelate. If some criterion
for goodness of physical design takes into consideration range, speed,

complexity, reliability, etc., we certainly expect these operations to

be highly related.

For the sake of completeness a very brief discussion on how an
overall system is controlled by outputs from error-checking operations
is given next. Such a complete error-checking system is shown in fig.

4.3,

(4) Complete Error Checking System

In the error correcting system shown in fig 4,2 no provision was
made either for the interpretation of the output from the error correct-
ing operations, BbEn and BbT. or for overall system control governed by
such interpretation, For the sake of completeness the system in fig.
4.3 makes such provision by the addition of the System Self Checking

Control Units.

The conceptual framework for a complete system has been developed.
What do we do now? There are three related steps to take., First,
develop as powerful and as orderly a method for investigating how the
operations in the set {?}eEn,Eh, BbEn. BbT. T} are related. Second,
develop physically meaningful measures of system complexity, reliability
and feasibility. Finally, use the knowledge and understanding gained in
the first two steps to design actual physical systems, Section E under-
takes tne first step., Note is also taken of the importance of develop-

ing physically meaningful measures of complexity.
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E. RESEARCH METHODOLOGY

(1) General Discussicn

A system concept general enough to treat most computational prob-
lems of interest as special cases is developed in Section D. A block
diagram representation of this system is shown in Fig. 4.2. The purpose
of this section is primarily to develope a methodology for research on
error~checking methods. The system concept defined in Section D is only
the first step towards this goal. We still need to impose additional
mathematical structure on the system hefore a more rigorous mathematical
analysis may begin, Tnis mathematical structure will be imposed
(implied) by the definitions for the various elements %, ¥(x), and T(x)
as well as the operations ??eEn. Eﬁ, abEn, ?, and EbT. There are, of

course, an infinity of mathematical structures from which to choose.*

Wnat attributes should the definitions have? Primarily we require
the definitions to meet a "let's-make-progress" criterion. Secondly,
the generality of the system must be maintained.®** Tnirdly, both the
definitions themselves and the structure imposed on the system by thne
definitions must be clear enough so that the heuristic may serve as a

powerful aide and guide to further mathematical analysis.

Fortunately, all three of these criteria can be met. There is a

way of viewing the noisy residue encoding process

x 0 o r(x) + elx) (5.1)

* Tne author has considered s significant number there of!
;’ That is, we want to be able to realize any mapping from 1 to
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that implies a natural requirement on the vector ¥X. Once X is. suitably
defined, definitions for all the remaining elements and operations fol-

low.

(2) Towards Defining ¥

Think of the scalar ianput x in (5.1) as representing the set of all
" possible incorrect outcomes of the noisy encoding process. This point
of view establishes a correspondence between x and a set of residue vec-

tors:

X <—> {r(x) + e(x) for all e(x) of possible interest }.* (5.2)

Now every r(x) + e(x) will decode to some number

r{x) + e(x)——lﬁi%» x +Del(e(x)) = x + &(x)

wnere &(x) = Dele(x)). So, we might just as well establish the

correspondence between x and the set of decoded residue vectors:

x —» &(x) = { x + @(x) for all &(x)}.** (5.3
For the purposes of notational simplicity the latter correspendence is

used in the discussion that follows.

As a next step the set &(x) in (4.3) is partitioned inte the dis-

tinct sets

&(x) = { x U [ x + 8(x) for a)l &(x)#0}. 5.4

* In general, one presumedly would like a system to be error
free. There may be special cases, however, where certain error
tvpes are considered far more costly or "disasterous" than others,
In these cases the primary concern may be to eliminate only these
garticular error types.

* From here on the phrase " of possible interest" as a qualifier
on the set will not be used explicitly. Unless stated otherwise,
however, this qualifier is implied.
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Define the set P(x) by

P(x) = { x + &(x) for all &(x)#0}.
The set #(x), then, is tne set containing all the possible outcomes of

the noisy encoding process, given x is the input.

The input domain 2= { 0,1,2,...,M=1 } can be partitioned then into

the 2 distinct sets

X = P(x)y P(x)C.*
So we have a partition of 1? VWhat purpose does it serve? We are lcok-
ing for a suitably well defined definition for the vector ¥. If X is to
"supply" enough information about the true input such that all errors
can be detected, then certainly it must supply enough information to

tell us unambiguously if the output x + &(x) is an element of P(x) or

P(x)C.

Tnis error-checking may be accomplished if X itself induces a par-
tition on X, the same partition on 1 induced by x. That is, x must con-
tain at least enough information to induce the partition P(x) ( P(x)C,

The error-checking can then be done by asking

is x + &(x) € P(x) or not?
Definition for X

-~

The vector ¥ is the output of the FreEn pre-encoding process,
It contains all the information about the scalar input x available

to tne system. It is a kx1 vector partitioned into the two subvec-

¥ P(x)C means the compliment of P(x).
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tors v(x) and a(x):

X — 5 ( v(x), a(x) )

where v{(x) is a ix1 vector and a(x) is a jx1 vector and k=i+j. The

scalar input x is represented by the vector v(x); and the addi-
tional information about x is pre-encoded by the PreEn process to

the vector a(x). The pre-encoding of

X ————> v(Xx)

is one-to-one and onto. The use of such coding allows for a gen-

eral representation for the input x. Examples of such a general

representation are:

(i) X = x1+x2+x3+...+xn — v(x) = ( x1,x2.x3.....x ) and

n
(2) X = X, X5 x3 cee X m> vix) = ( x1,x2.x3...., X ).

(3) Towards Defining‘FreEn, Eﬁ. F(x), BEEn, i; E(z). BET

All of the operations $}eEn, BbEn, T and BpT satisfy the following:

(i) the mappings have vector inputs (range) and vector outputs

(domain),

(ii) the elements of any vector are nonnegative integers,
(iii)tne number - © possible vector inputs and outputs is finite, and
(iv) all of the mappings can be realized by polynomial transformations.

Definition for'sreEn

Tre pre-encoding process nas been implicitly defined by the




definitions given for the scalar input x and the pre~encoded output

vector %.

Definition for ¥(x) and :h(l)-
The vector F(x) is the ouput of the encoder En:

% En_o F(x).
Tne vector ¥(x) is a nx1 vector. 1In a specific case ¥(x) might

satisfy the equality:

F(x) = En(x) = En( v(x), a(x) ) = ( Eng(vix)), Ens(alx))

where the mappings Ea, and En, are independent operations acting
independently on the vectors v{(x) and a(x) as inputs; En1(.) is a
1x1 vector and En2(.) is a mx1 vector where l+m=z=n., In general,

however, the vector F(x) will satisfy only the equality:

F(x) = En(x).

Definition for OpEn

The error-checking operation abEn has as its input the nx1

vector F(x) and a binary scalar output. The output is given by

DpEa(F(x)) = ‘ 0 if encoding inconsistent
1 if encoding consistent

The operation T has as its input the nx1 vector ¥(x) and a qx1

output vector t(x):

Tl
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|3 ( {
¥ §T1(x)l
F(x) ——> :T (x)|' = t(x)
12 :
where T1 (.) is ox1 vector, T, (.) is px!1 vector and o+p=k. The

2

subvector T1(x) is the residue vector for the scalar T(x) . The

subvector T2(x) contains the additional information about x pre- -

encoded by ﬁ}eEn.

~

Defirnition for opT

The error-checking operation Bbr nas as its input the kx1 vec-

tor T(x) and a scalar binary output. The output is given by

BbT(F(x)) =‘ 0, if the mapping T is inconsitent
l 1, if the mapping T is consistent.

(4) Towards Statement Of Research Methodology -

The proposed research methodology is based primarily on the parti-
tioning concept introduced in the subsection Towards Defining %. Any
error detecting/co;recting method, no matter how derived, implicitly
induces a partition on the scalar input range . Therefore, obtaining a
clear and thorough understanding of now partitions of the finite range
can be generated from (i) a collection of numbers (the elements of a(x))

and (ii) 2 set of operations on these numbers, is a worthwnile goal.

If we nhad this understanding, the following questions could be

more easily answered,

(i) Given a set of operations and a finite set of elements what classes

of partitions can be parameterized by the set of elements?
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Y (ii) For a given class of partitions that can be parameterized wnat tra- |
deoffs exist between the number of elements used and the type,

number and order of operations used to generate the partitions,

(1ii)Is there a minimum cost approach under some cost criterion where
the number of elements and the type, number, and order of opera-
tions used to generate a partition are the variables affecting

cost.

(5) Statement Of Research Methodology

i
!

Our research efforts should be directed towards:

(i) acquiring a more thorough mathematical background on the nature of

partitions and how to generate them,

(1i) continuing to generate partitions by ad hoc methods (see the next

- subsection entitled Some Adhoc Partitioning Methods),

(iii)developing a variety of physically meaningful cost c¢riteria (com-

plexity measures) likely to suit most applications, and

(iv) investigating the relationsnip between the choice of a complexity

measure and the resultant cost of a given partition method (a sen-

sitivity analysis). }

(6) Some Adnoc Partitioning Methods

(1) Number theoretic properties like evenness/oddness and tne nature of

- the input number's prime factorization may be useful.
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(ii) Partitions induced by encoding the input x mod some set of small

(v)

moduli not subject to error may prove to be the best way. The par-
tition of induced by this method given the iaput x is illus-

trated below:

0 M-1
1 & — — " - |
| -+ —¢ + t L —
e o+ o X=2+8 x-S X

X+S X425 ., . .

where S = the product of the small error free moduli.
The partition induced on by the moding operaticns is

{x} U { (x+k S) modM, k = nonzero integers }

(iii)Partitions may be induced by passing lower and upper bounds for the

input x, i.e,, X€(x-a,x+b).

(iv) Combine the above two metnods,

Partitions could be generated by carrying out operations on the
residue vector. For example, a set of values { (¥(x), O (F(x)) |
i=1,...? }, where {.,.) is an inner product and 0; (.) is an opera-

tion defined on ¥(x), could be computed.
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F. ERROR CHECKING BASED ON ADDITIONAL ERROR FREE RESIDUE ENCODING

(1) General Discussion

We are looking for ways to check errors in residue encoding. It is
a natural question to ask "Can we use residue encoding to check residue
encoding?" The answer, in general, is yes. Simple examples of tnis
kind of error-checking are given in Section D, All the examples in this
section are also of tnis type. There is a basic form to tnis type of
error-checking. The following discussion descrives this form, The

pre-encoding operation PreEn generates a residue vector p(x):

]
X mods1;
x mods,|

2,

X modsn

where A=z [si i i=1,2,...,n} is a set of error free moduli (generally
small), all s; are relatively prime, and the range of 4 is S. The

encoding operation En generates a residue vector 7(x):

where M= {mi ' i=1,2,...,n} is a set of noisy moduli (generally large),
all m, are relatively prime, and the range of Mis M. The pre-encoded
residue vector P{x) then is used to check for errors in the residue vec-

tor #F(x).

For special kinds of error processes, the error-checking operations
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based on this method might prove to be cost effective. The method dis- f

cussed below in "Example: Special case of redundant encoding" is a good

example of such a special case. It should be pointed out, however, that . fl
in order to detect (or correct) all possible errors for any error pro- .
cess, the range of the small moduli 4 set, S, must be at least as large
as the range of the encoding set M, M. If S=M, clearly one would encocde
the input x with the error free moduli set 4 and not use the error prone

set M at all!

It is convenient to separate the method of using additional error
free moduli into two distinct types: (i) the range S divides M and (ii)
the range S does not divide M. These two-distinct types are discussed
in the two following subsections., The "S divides M" type is handled

first.

(2) Discussion of "S divides M" Error Checking

|
Example 2 (Section D) gives an overall description of tne nature, ;

behavior, and cost of such error-checking systems, As indicated in

Example two, the error-checking method is capable of detecting all h

errors except those of the form:

x + keS, k= 1,2,....

The method can not in general correct all detectable errors, However,
if the nature of the error process is of a certain type, it is possible,
in principle, to detect and correct all errors. Fxample two takes note
of this possibility for noisy mod9 encoding when the error can shift the
correct residue value by at most 1. This special case uses only one

modulus. This can be generalized to encoding with n noisy moduli and




error-checking with n error free moduli, The following example does

Just that.

Example: Special case of redundant encoding

There are three basic requirements that a given noisy residue
encoding process must satisfy for this special case of error correcting
to work. One requirement restricts the class of error processes possi-
ble. Thne other two requirements restrict the choice of moduli used,

The requirements are:

(1) the error process for each modm. encoding must satisfy the follow-

ing:
Inoisy x modm; encoding - true x modm; value | = | error | <

maximum residue snhift from error = maxrs <

the modulus m, for all possible error,

(ii) tnere must exist an error free modulus Sy for each my

i that satis-

fies:
sil 2e¢maxrs+1,

(iii) and the error free modulus Sy must divide each m the modulus

iv

that Sy checks.

Example 2 (Section D) gives an example satisfying the above
requirements. The maximum residue shift from error is 1. The modulus

my = 9. Tne error checking modulus is s, = 3 (which obviously divides

1

9). Tne cost of correcting errors is:
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Cost of correcting errors = cost{(x mod3 encoding)

+ cost! OpFEn operation with 3x9 = 27 DOF).

A generalization of this crror correction procedure is straight
forward. For every mi€7n= {mi such that i=1,2,...,n} = "noisy encoding
set" there must be a corresponding 55 = {si ! i=1,2,...,n} = Perror-
checking enccding set" such that the tnree above requirements are met.
The error-checking operation ‘BbEn used to correct th; noisy residue
values x modmi can be decomposed into n independent operations. There

exists a one-to-one ocrrespondence between the "ith residue pair"

fzfined by

ith residue pair A (xmodmi + error, xmodsi )
and the "ith independent error-checking operation."”
Tnis decomposition can be done because each modulus my (or si) supplies
information about the input value x independent of all the otner moduli
in tne set M( or 4). The moduli pairs (mi,si) are redundant nowever,

and therefore x modsi supplies information about x that is not indepen-

dent of tne information supplied by the x modm.1 value.
The ith independent error correction operation in BbEn requires

siomi POF .,

Therefore tne cost of the ith operation is:

Cost of correction x modmi error = cost(x modsi encoding)

+ cost(operation with s " DOF) ,

i

The total cost of error correcting then is:

omameny 2908

il
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Cost of error correcting r(x) = cost(encode x witn 4)

n
+ 2 cost( operation with S50 my DOF) .
i=1

The following example illustrates the essentials of this metnod.
Example

Suppose encoding is done with the set M = {121,169}, If the max-
imum residue snift from error is 5, then the set 4= {11,13} could be
used to check for all errors in residue encoding with modulus set .
The set 4 could also be used to check for all errors in a general T
operation if the maximum residue shift remains 5. The cost of error

correcting is:

Cost of error correcting = cost(encode x with 4)

+

cost(operation with 11x121 DOF)

+

cost(operation with 13x169 DOF).

Tne nature of error processes intrinsic to analog encoding of residues
often satisfy the requirements above, Tnerefore tnis special case of
error correcting should prove to be useful in situations where analog

processes are used to do mod encoding and residue arithmetic in general,

(3) Discussion Of "S does not divide M" Error Checking

Example one ( Section D) is a special case of this type of error-
checking, In the example, x mod2 encoding is used to detect all odd
snift errors, One might hope that detecting even shift errors is just
as simple. Unfortunately, it is not. If some small odd modulus § is

used to check for even snift errors, it can not detect even shift errors
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of the form:

wnere x is tne input scalar and ¥ is some small odd modulus assumed to

be error free.

As an example, consider Table III.2 in Example two (Section D).
Suppose tne input were 0. If the small odd modulus were 3, the value x

mod3 could not detect the error

x mod9 + error =0 + 6 = 0 + 2x3
At best, error-checking methods based on an error free set of moduli
4= {2, and otner relatively prime odd moduli} can detect all errors

except those of the form

x + k-3, k=1,2,3,... (6.1)
wnere S is the range of 4. In general these methods can not correct all

detectable errors,
The cost of error-checking is:
Cost of error-checking = cost(encode with 4 moduli set)

+ cost(OpEn operation with SeM DOF). (6.2)

(4) Final Discussion

Special structure in thne error process intrinsic to the mod encod-
ing (or residue aritnmetic operation) can lead to error-checking methods
capable of detecting and even correcting all errors. The method
described in "Example: Special case of redundant encoding" is a non-

trivial example. In general, nowever, error-checking based on
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generating additional information about x by performing extra error-free
mod encoding can not do any better than that indicated in the results
(6.1) and (6.2) (in the previous subsection).
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G. SOME MORE ERROR CHECKING METHODS

(1) General Discussion

The discussion of the three main topics in this section is for thne
most part heuristic. First, methods of error-checking other than the
use of additional error free moduli are discussed. Second, methods

using the pre-encoding:

X — > v(x)
as defined in the "Definition for X" (Section E) are briefly covered.

Lastly, a way to perform the residue aritnmetic operations

X modm, ————s T(x) modmi} i=z1,2,...,n (7.1
using a set of small moduli whose range is > m;, for all i=1,2,...,n is

discussed.

(2) Error-Checking Without Additional Error-Free Residue Encoding

The partitioning methnods given in (i), (iii), (iv), and (v} in (6)

Some Adnoc Partitioning Methods (Section E) are examples of such

methods. Is it possible that these metheds can do a substantially
better job of error-checking than methnods using additional error free
residue encoding for the same cost? This appears doubtful. The fcllow-

ing discussion indicates why this is so.

A given error-checking operation for some residue aritnmetic opera-

tion T,

r(x)———I——>-t(x)
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must generate numbers other thnan residue values from thne input (x),
r(x), and the output t(x). Tne numbers are then compared. If tnere are
M possible inputs (and outputs) and the number of possible errors for

any given input is N then any error-checking operation has, in general,
M+ N DOF.

However, tnere appear to be two reasons why such methods may prove

cost effective in some situations:

(1) error-checking operations which generate partitions different from

those that can be easily generated with residue encoding may be

necessary and

(ii) ordinary scalar aritnmetic operations on residue x modm. values may

prove to be easier (less costly) to perform than residue encoding.

(3) Alternate x Input Representations

In "Definition for %" ( Section E) mention is made of pre-eancoding

the scalar input x to some alternate representation: f

X ——3 (x1.x2.x3...‘.xn)wnere X =T Xy Xy Xgoeee X

Wny do tnis at all? Suppose the input domain 1= {0,1,2,...,M=1}, f

Tnen it might be possible to use a3 set of Xy such that each Xy satisfies

n-—
Xi < VM .

If each element of v(x) is residue encoded separately, then the range of

- the residue encoding process is reduced to only qﬁl

- Tnis reduction in the range necessary to encode x 1is significant

- 105 -




( (

and certainly would help make systems designed to perform arithmetic
operations based on a residue number system less susceptible to encoding
error. Unfortunately, using the v(x) representation for x does destroy
the nice structure for arithmetic operations inherent in a residue
number system with the full range M. Hence, the cost of "doing busi-
ness" , i.e.,, the cost of performing an actual arithmetic operation T

will substantially increase.

(4) Small Residues To Do Large Residue Arithmetic Operations

For some residue arithmetic operation T each residue x modmi is

mapped to:

X modmi ——— T(x) modmi, i=1,2,...,n. (7.
But what is the mapping in (7.1)? It is a mapping from the finite set
10.1.2.....mi—1} for all i=1,2,...,n to itself. Therefore residue

arithmetic could be used to accomplish it!

Suppose we nave a moduli set (= {qi i iz1,2,....k} where the range

of ¢ is Q and Q@ m, for all i=1,2,...,n. Then this cne set of small

moduli could used to compute all the mappings in (7.1)!

Tne cost of doing each residue arithmetic operation directly in

(7.1) is:

Cost of itn residue operation = cost(operation with ms DOF)

+ cost(error with mi).
The cost of doing each residue operation with the set Q is:

Cost of ith residue operation =[ cost(encode x modmi with Q) ]

- 106 -
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k

+ 3 cost(operation with ay DOF)
iz1

+ cost(error with Q)
+ [ cost(Decode to T(x) modmi) ].

]
The cost of encoding and decoding witn Q are in brackets because it is

possible to design a system that performs many different T mappings such
that the encoding with Q is done only once before all the T mappings and

the decoding is done only once after all the T operaticns.

If it is intrinsically easier to generate x modmi residue encoding
for large m, than it is to generate the arbitrary T mappings ia (7.1),

this method may prove particularly cost effective,
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H. SUMMARY

A general system concept able to incorporate all residue arithmetic
operations and error correcting/detecting methods as special cases is
developed. The block diagram representation in Fig. 4.3 depicts this

system.

A methodology for research into the intrinsic capabilities of error
correcting/detecting methods is proposed. The motivation, main develop-

ment, and statement of this methodology is given in Section E.

Several simple examples of error correcting/detecting methods are
given. In particular, the method explained in "Example: Special case of
redundant coding™ might prove to be cost effective when analog processes
involving thresholding are used to perform residue arithmetic opera-

tions.

The topic of system complexity and resultant cost is an important
one. The need to develop physically meaningful measures of system com-

plexity is noted in (5) Statement of Research Methodology (Section E).

The costs of various error-checking methods are discussed in the exam-
ples given. Upon comparing the form of the costs as given, it is clear
that more quantitative statements need to be made in order to chose with

confidence between some of the different methods.
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ADDRESS CONT

0u00d0 XJUuu
0Uu001 X001
Vuuvllu Xulo
000vull Xull
0001v0 X100
00UlUl  XXXX
000110 XXXX
JU0111 XXXX
001uu0 X001
001001 Xul0
V01010 X011
001011 X100
UY1100 X000
001161 XXXX
001110 XXXX
001111 XXXX
010000 X010
010001 X011
010010 X100
010011 X000
010100 X001

TABLE T1

APPESDLX
ADDRESS5 CONT
010101 XXXX
010110 XXXX
010111 XXXX
011Guv X011
011v01 Xlow
0110i0 X090
011011 Xoul
0111900 X010
011101 XXXX
011110 XXXX
011111 XXXX
100000 X1lu0
100001 X000
100010 X001
1G6ovll X010
106100 X011
100101 XXXX
100110 XXXX
100111 XXXX
101600 XXXX
101001 XXXX

- 109 -

ADDRESS CONT

lululo
101011
101100
10l1vl
lu1110
lullll
116000
110001
119010
110011
110100
11ul01
110110
11ulll
111000
111001
111010
111011
1111060
111161
111110
111111

XXXX
XXXX
HXXX
XXXX
XXXX
XXXX
KXXXL
XXXA
XXKX
XXXX
AXKX
XXXX
XXXX
XXXX
XXXX
XXXX
XXEX
XXXX
XXXX
XXXX
XXXX
XXXX

e ——— =




ADDRESS

COuT (

JOUU0U
0cuual
00Ul
00001l
000100
00ulul
gu011U
000111
00100V
001001
u010U10
001ull
oullov
001161
001110
001111
010000
010001
019010
010011
010100

XG00
Xuul
X010
X011
X100
X101
X110
X XXX
X001l
XGlo
Xoll
X100
X101
X110
X000
XXXX
X019
X011
X100
X101
X110

TABLE T2

ADDRESS

CONT

uod 00V
u0uool
uvuulu
ouLOlLl
000100
0001Vl
uv00110
00111l
v0l000
V01001
v01010
v0l01l1l
001100
v0llal
V01110
UuUllll
010000
010001
610010
010011
V10100

X0U0
XUl
XUlu
X011
X100
X101
X110
X111
XUuul
X010
X011
X100
X101
X110
X111
X000V
X010
X011
X100
X1lul
X110

TABLE T3

ADDRESS CONT

010101
019110
010111
Gliuvy
V11001
011010
01l1u1ll
011100
0111ol
011110
011111
100000
100001
100010
100011
100100
100101
100110
luol1ll
101000
101001

X000
Xudl
XXLX
Xull
X1v0
X101
X110
X000
X001l
X010
XXXX
X100
X101
X110
X000
X001
X010
X011
XXXX
Xivl

X110

ADDRESS CONT

010101
0lu110
G10111
011000
011001
011010
vllull
011100
011101
01111lv
011111
1000uV
100001
100010
100011
100100
100101
100110
1u0111
101000
101001

W e b e e

X111l
X000
X001l
X011l
X1lo0u
X1lvl
X1llvu
X111l
Xu0u
XJ9Jl
X01V
X100
X101
X110
X111
X009
X001
X010
X011
X101
X110
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app{ s coNT

101010
101011l
101100
101101
19111V
101111
119030
110001
110010
110011
110100
110101
110110
1lulll
111000
111001
111010
111011
111100
1111ul
111110
111111

ADDRESS

101010
101011
101100
1011ivl
101110
101111
110000
110001
110010
116011
1101lvu0
110101
1106110
110111
111000
111001
111010
111011
111100
111101
111110
111111

X000
X301
X010
Xull
X1lov
XXXX
X1llu
%000

"Xull

X010
X011
X100
X101
XXXX
XXXX
RXAX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX

cout

X111l
X00u
X001
Xulo
X011
X100
X110
X111
X0u0
X001
X010
X011
X100
X1vl
X111l
X00u
X001
X010
X011
X100
X101
X110
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ADDRESS CC:.. ADDRESS COWT HORESS CONT

000U  XJUY V10101 XXX 101010  XXXX

000001 Xvol 01011C XXXX 101011  XX4X :
G00ulo XUld 010111 XXXX 101100 X¥XX ,
000Ull  XO1ll 011600 XXXX 101101 XX%X

U0Vu100 X100 011001 XX4X 101110  XX%X

V00101 X101 011010 XXXX 101111 XXXX

000110 X110 V11011 XXXX 110000 XXXX

00ulll X111 011100 XXXX 110001  XXXX

00100u XXXX 011191 XXXX 110010  XXXX

001001 XXXX 011110 XXXX 110011  XXXX

v01010 XXXX 011111 X%XX 110100 XXXX

001011 XXXX 100000 XXXX 110101 XXXX

001100 XXXX 100001  XXXX 110110 XXXX

001101 XXXX 100010 XxXXX 110111  XxXX

001110 XXXX 100011 XXXX 111000 XXXX

001111 XXXX 100100 XXXX 111001 XXXX g
010000 XXXX 100101 XXXX 111010 XXXX 5
010001 XXXX 100110 XXXX 111011  XXXX ;
010010 XXXX 160111 XXXX 111100 XXXX '
010011 XXXX 101000 XXXX 111101  XXXX }
G10100 XXXX 101001 XXXX 111110 XXXX

111111  XXXX

TABLE T4 i

|
ADDRESS CONT ADDRESS CONT ADDRESS CONT

QU0dvu  X0Ul 0101901 Xvdl 101010 X011 i

uugaol X0l 010110 Xolo 101011 X1o0v {

000010 X010 012111 Xull 101190 X000 !
000011 Xull 011000 X100 101101 X001l
000100 X100 011001 X000 101110 XJO10
000Ul  XOO0u 01161u XJu1l 101111 X011l
00vul10 X0Vl 011011 X310 1190060 %100
000111 XO0lv 011100 X011 110001 X306
GU0lo0u XUll 011101 X100 110010 X001
001001 X100 0l11llu  XO0uv 110011 X313
V01010 XO00v 011111 X301 110100 X011
001011 Xxuul 100000 X011 110101 X106
001100 XO0lv 100001 X100 116110 X000
001101 X011 100010 Xv000 110111 X001
001110 X1luvo 100011 Xool 111000 X010
. 0Ul1lll X000 100100 X010 111001 X011
01000u Xu01l 100101 X011l 111010 X1lo0v
010001 XO010 100110 X1v0 111011 Xo00
010010 X011 100111 Xu0o0 111100 X001
010011 X100 101000 XuQl 111101 X010
01010V X000 101001 X010 111110 X011l

111111 X100
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ADDRESS CONT. -
Jy0uold X0uu
v0ovLl  XxO0ul
Uuu0l0 X010
00U011 X011
0001u0 X100
000101 X101
v0011lu X110
000111 XOU0
001000 X001
001001 X010
Jul0l10 Xoll
U0l1011 X190
001100 X101
001101 X110
001110 X000V
001111 X001
010000 X010
010001 X011
010010 X100
010011 X1lul
010100 X110
TABLE T6
ADDRESS CONT
Uudo00 XxuU4d
000Ul X001
000010 X010
000011 X011l
udulgt X100
000101 X101
000110 X1llv
000111 X111
001000 XUOGO
001001 X001
001ul6 XO01lv
001011 X011
0ullou X100
001101 X101
001110 X119
V0111l X111
01000l XV0U
010001 X001
0l0ulu Xulv
vVitull Xoll
010100 X10u

TABLE T7

ADDRESS CONT
0l01iol Xu0Y
U1Clly X0ul
Ul0111 X010
011000 Xull
011vYul Xiou
0llulu X101
J11011 X11vu
011100 X600
U11191 X001
011110 X410
U11111 X011l
100000 X011
100001 Xlo0
100010 X1lul
100011 X110
100100 X006
100101 X001
100110 X010
100111 Xoll
101000 X100
101001 X101
ADDRESS CONT
010191 X101
01011u X110
010111 X111
011000 X000
011031 Xo0l
01156190 XO0lu
0lioll Xvull
0111v0 X100
011101 X101
011110 X110
611111 X111
100000 X000
100031 X301
100910 X010
100011 X011
100100 X109
100141 X1ul
1v0ilu  X1llo
100111 X111
1v10V0 X000
1013901 XJUld

ADPRESS CONT
101010 X110
161011 X000
10110 X001
101101 X010
101110 X011
101111 X100
115000 X101
110001 %110
110010 X000
110011 X001
110100 X019
110101 X011
11611y X100
110111 X101
111000 X110
111001 X000
111010 X001
111011 X010
111100 X011
111161 X100
111110 X101
111111 X110
ADDRESS CONT
101010 X010
101011 X011
101130 X100
101101 X101
161110 X110
101111 X111
110000 X009
110u01 X001
110013 X010
110011 X011
110100 X100
110101 X101
110110 X110
110111 X111
111000 XU
111001 X900l
111910  x0lu
111611 X011
111100 X190
111101 X1ul
111110 X1l
111111 X111
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ADDRESS CONT ADDRESS CONT ADDRESS CONT
UuO0UG X300 0lulul X010 101010 Xxxx
vou00l X011 0lully X1yl 101011 ¥xux
V0001V X119 V10111  XXXX 1Ul100  XX¥%X
v0VV1l X010 011000 X101 101108 XXXX
000100 X101 011091 Xuvul 101110 XXXX y
00U191 XUl 011010 X100 101111  XXxX
O0V1l0 X100 011011 X00g 110000 ¥XXX a
000111 XXXX 011100 Xol1 110001  xxxx
001000 X100 011101 X1lo0 110010 XXXX
001001 X000 011110 XOlu 110011 XXXX .
001010 X011 011111 XXXX 110100  ¥X%X ;
0U1ull X119 100000 XO0lu 110101 XXX
001100 X010 100001 X161 110110 xXxXX .
001101 X101 100010 X001 110111 XXX
001110 X001 100011 X100 111000 XXXX o
001111 XXXX 100100 X0GO 111001  XXxx v
0100090 X001 100101 X011 111010 XXXX .
010001 X100 160110 X110 111611  XXXX
010010 X000 100111 XXXX 111100 XXXX
0100U11 X011 101000 XXXX 111101  XXXX
010100 X110 101001  XXXX 111110 XXxX 1
111111  XXXX ‘
TABLE T8
i
ADDRES3 CONT ADGRESS CONT ADDRESS CONT B
000000 XO00U 010101 X111 101010  XXXX !
00UOV1 X101 010110 X1luv 101011  XXxX ‘
00UUl0 X019 010111 X001 101100 XXXX
V0V011 X111 011000 X001 101101  XXXX }
000100 X100 011001 X1lu 101110 XXXX
000101 X001l 011V10 X011 101111 XXXX !
00Ull0 X110 011011 Xu0v 110000  XXxX |
VUU111l X011 611100 X101 110001  XXXX
V0100U XUll 011101 XOQlu 116010 XXXX ‘
001001 Xv0y 011110 X111 110011 XXXX
V01010 X101 011111 X160 110100 XXXX
001G11 X010 100000 X100 110101  XXXX
0011v0 X111 100001 X001 110110 XXXX
001101 X100 100010 X110 116111 XXXX
001110 X001 100011 X011 111000 XXXX
601111 X110 100100 X000 111001  XXXX
010060 X110 100101 X101 111010 XXXX
010001 X011 100110 X010 111011  XXXX
010610 X000 100111 X111 1111060 XXXX
010011 X101 101000 XXXX 111101  XXXX
010160 X019 101001 XXXX 111110 XXXX

111111  XxxXxxX

- 113 ~

TABLE T9




-

ADDRESS CONT ADDRESS COWT ADDRESS CONT
0u000uU X000 101ul  X1lul 101010 xull
0030Vl X111 010110 Xlov 101011 Xo1cC
000010 X110 010111 Xoll 101100 Xoo1l
000011 X141 011000 X011 1391101 Xugg
v0010v X100 011001 X0lv 101110 X111
0ovUL1l0l X011 0116410 X001 101111 X110
0vd01l1u X310 011011 Xu00 110000 X1llo
00Ulll Xuul vlllou X111 110001 X101
601000 X001 ¢11101 X110 110010 X100
001001 X009 011110 X101 110011 Xo0l1l
uU1010 X111 011111 X100 110100 X010
001011 X110 100000 X100 110101 Xo0ul
0Ull00 X131 100001 X011 110110 X000
001101 X1l0v 100010 Xo1lv 110111 X111
JU1110 Xull 100011 X001 111000 XXXX
001111 Xul0 100100 X000 111001 XXXX
010000 X010 100101 X111 111010 XXXX
] 010001 Xo01 100110 X110 111011 XXXX
010010 X000 100111 X131 111100 XXXX
010011 X111 101000 X101 111101 XXXX
010100 X110 101001 Xloo 111110 XXXX

111111 XXXX

TABLE T10
ADDRE3S CONT ADDRESS CONT ADDRESS CONT
00000 vdvu 10101 XXXX 101010 XXXX
VLUDULl V001 010110 XXXX 101011  XXXX
05010 UOl0 010111 XXXX 101100 XXXX
V0UG11 0011 011000  XXXX 101161 XXXX 1
VUV1l0U 010V 011001 XXXX 101110 XXXX
VU010l XXX 011010 XXXX 101111 XXXX
000110 XXXX 011011 XXXX 11U000  XXXX
U0ulll  XXXX 011160 XXXX 110001  XXXX
001000 XXXX 011101 XXXX 110010 XXXX h
V01001  XXXX 021110 XXXX 110011 XXXX
001010 XXXX 011111 XXXX 110100 XXXX
001011 XXxX 100uyd  XXXX 110191  XXXX
001100 XXXX 100001 XXXX 110110 XXXX
yU1101 XXXX 100010 XXXX 110111 XXXX
VUl1llu  XXXX 10Ud11  XXXX 111000 XXXX
001111 XXXX 100100 XXXX 111001 XXXX
010000 XXXX 100101  XXXX 111010 X%XXX
V10001 XXXX 100110 XXXX 111011  X%XXX
V10010 XXXX 100111 XXXX 111100 XXXX
010011 XXXX 101400 XXXX 111101  XXXX ,
010100 XXXX 101001 XXXX 111110 XXXX -

111111 XXXX
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ADDRESS CONT

0Jy000uv 0UV00
Uu0001 JJuY
600uld 00uo
v00011 0000
000100 1111
u00101 1111
000110 1111
000111 1111
001000 0000
001001 000y
001010 0000
001011 000U
001100 1111
001101 1111
001110 1111
001111 1111
010000 0000
010001 0000
010010 06000
010011 O©VOV
010100 1111
TABLE T12

ADDRESS CONT

V00000
0900Vl
000010
-000011
00U1l00
v0ul01
Juvllu
060111
V01000
go1luul
J01010
OU1l011
V01100
001101
001110
001111
010000
010001
010010
V10011
0l0luy

Voo
0010
0100
011u
0111
10v1
1011
1101
0690
(VR Y]
0149
V110
ulll
1001
1011
1110
0000
0010
0101
0111
ulll

TABLE T13

ADDRESS CON'T

010101
010110
0lulll
011000
011001
011vlo
011011
011190
011101
011110
011111
100000
100001
100010
100011
160100
100101
100119
100111
1010060
101Qul

ADDRESS

1111
1111
1111
0900
0000
00U
0000
1111
1111
1111
1111
0000
0000
0000
0vo0
1111
1111
11i1
1111
0000
0cuo

CONT

010101
010110
Ul0111
011000
011001
0l1010
Vl1lvull
0111900
011101
011110
011111
10000u
160001
100010
1v0011
10019Jv
100101
10uilv
100111
101000
101991

101y
1100
1119
0o0u
0011
0101
0111
1000
101
1100
1110
0001
00l1
0101
111l
1v00
1ulo0
1100
1111
0001
0011
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ADDRESS

CONT

101010
101011
101100
101101
101110
101111
l1louou
110001
110Ul
110011
110100
110101
110110
110111
111900
111001
111010
111011
111100
111101
111110
111111

ADDRESS

vouo
000v
1111
1111
1111
1111
0auo
00090
0000
vooo
1111
1111
1111
1111
XXX
XXXX
X¥XX
XXXX
XXXX
XXXX
XXXX
XXXX

Ccou!

o]

101010
101011
101190
101101
101110
101111
110000
110001
110010
11u011
110100
110101
11011v
110111
1110600
111vu01l
111010
111011
111100
111101
111110
111111

J1l01
19000
10u0
1011
1101
1111
0001
0100
0110
1000
1001
1011
1101
1111
XXXX
XXXX
XXXX
XXxx
XXXX
XXXX
XKXX
XXXX
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ADDRESS CONT ADDRESS CONT ADDRESS CONT

|
|
00Q000 UOQU 010101 0001 101010 1111 |
0000Vl 0011 0l1ull0 01dv 101011 0Qul0 ﬁ
000010 ©$110 010111 0111 101100 1101
000011 1601 011600 1111 101161 000U .
000100 0100 Glludl 001V 101110 0011 y
JOCl0l  $1l1l 011010 0101 101111 0110
000110 101U 011011 1600 1100600 1110 .
000111 1101 01110J 0011 110001 0001
U01000 vlol 011101 91lo0 110010 0100
001001 1000 011110 1001 110011 0111 .
¢G1010 1011 011111 1100 110100 00610 1
) 001011 1110 100000 0Olov 110101 0101 ¥
001100 1001 1000ul 0111 110110 1000 ;
601101 110 100010 1010 110111 1011 |
001110 1111 100611 1101 111600 XXXX .
001111 0010 100100 1000 111001 XXXX |
010000 1019 100191 1011 111010 XXXX :
010001 1101 100110 1110 111011  XXXX
010010 0000 100111 0001 111100 XXXX
010011 0011 101000 1001 111101  XxxX
010100 1110 101001 1100 111110  XXXX

111111 XXXX

TABLE T14

ADDRESS CONT ADDRESS CONT ADDRESS CORT ’
600000 0000 010101 0011 101010 0110

00gu01l 0001 010110 01060 101011 0111

00001u 0010 010111 0O1lul 101100 Q101

000011 Goll 011000 0011 101101 0110

v00100 0001 011601 0100 101110 0111

Goulol 0019 011010 0101 101111 1000

000110 0011 011011 0110 110000 0011

000111 0100 011100 01006 110u01 0100

601000 0010 011101 010l 116010 o010l

001001 0011 011110 0110 110011 U110

001010 0100 011111 0111 110100 0100

001011 0101 100000 0010 110101 0101

001100 0011 100001 0011 110110 0110

001101 0100 100010 Q100 110111 0111

001110 0101 100011 0101 111000 0101

001111 0110 100100 0011 1110012 0110

V10000 0001 100101 0100 111010 0111 -
010001 0910 100110 0101 111011 1000

010010 0011 100111 0110 111100 0110

010011 0100 161000 01luU0 111101 0111 -
010100 0010 101001 0101 111110 1000

111111 1001
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